Co-valorization of Tuff and Sandy Residues in Roads Construction
Downloads
Doi: 10.28991/CEJ-2022-08-05-013
Full Text: PDF
Downloads
[2] Goual, I., Goual, M. S., Taibi, S., & Abou-Bekr, N. (2012). Improvement of the properties of a natural tuff used in the Saharan road technique by adding limestone sand. European Journal of Environmental and Civil Engineering, 16(6), 744–763. doi:10.1080/19648189.2012.667653.
[3] Akacem M. (2017). alorization of local materials: tuff and dune sand in Saharan road construction. PhD Thesis, Oran University of Science and Technology-Mohamed Boudiaf, Oran, Algeria. (In French).
[4] Salhi, R., & Messaoudi, K. (2021). The Effects of Delays in Algerian Construction Projects: An Empirical Study. Civil and Environmental Engineering Reports, 31(2), 218–254. doi:10.2478/ceer-2021-0027
[5] Fenzy, E. (1966). Peculiarity of road technology in the Sahara. General review of roads and airfields, 411, 57-71. (In French).
[6] Struillou, R., & Alloul, B. (1984). Road valuation of encrusted tuffs in Algeria. Bulletin of the International Association of Engineering Geology-Bulletin de l'Association Internationale de Geologie de l'Ingénieur, 30(1), 465-469. (In French).
[7] Salhi, R., & Messaoudi, K. (2021). The Effects of Delays in Algerian Construction Projects: An Empirical Study. Civil and Environmental Engineering Reports, 31(2), 218–254. doi:10.2478/ceer-2021-0027
[8] Omar, H. M., Abbou, M., Akacem, M., Mekerta, B., & Semcha, A. (2017). Study of the mechanical characteristics of local materials from the Adrar region used in road construction. African Review of Science, Technology and Development, 2(01). (In French)
[9] Imanzadeh, S., Hibouche, A., Jarno, A., & Taibi, S. (2018). Formulating and optimizing the compressive strength of a raw earth concrete by mixture design. Construction and Building Materials, 163, 149–159. doi:10.1016/j.conbuildmat.2017.12.088.
[10] Gueddouda, M. K., Goual, I., Benabed, B., Taibi, S., & Aboubekr, N. (2016). Hydraulic properties of dune sand–bentonite mixtures of insulation barriers for hazardous waste facilities. Journal of Rock Mechanics and Geotechnical Engineering, 8(4), 541–550. doi:10.1016/j.jrmge.2016.02.003.
[11] Lopez-Querol, S., Arias-Trujillo, J., GM-Elipe, M., Matias-Sanchez, A., & Cantero, B. (2017). Improvement of the bearing capacity of confined and unconfined cement-stabilized aeolian sand. Construction and Building Materials, 153, 374–384. doi:10.1016/j.conbuildmat.2017.07.124.
[12] Elipe, M. G. M., & López-Querol, S. (2014). Aeolian sands: Characterization, options of improvement and possible employment in construction - The State-of-the-art. Construction and Building Materials, 73, 728–739. doi:10.1016/j.conbuildmat.2014.10.008.
[13] Yan, W., Wu, G., & Dong, Z. (2019). Optimization of the mix proportion for desert sand concrete based on a statistical model. Construction and Building Materials, 226, 469–482. doi:10.1016/j.conbuildmat.2019.07.287.
[14] Moulay Omar, H., Mekerta, B., Jarno, A., Imanzadeh, S., Alem, A., & Taibi, S. (2021). Optimization of dune sand-based mixture material for pavement design. European Journal of Environmental and Civil Engineering, 1–21. doi:10.1080/19648189.2021.1877827.
[15] Akacem, M., Zentar, R., Mekerta, B., Sadok, A., & Moulay Omar, H. (2020). Co-valorisation of Local Materials Tuffs and Dune Sands in Construction of Roads. Geotechnical and Geological Engineering, 38(1), 435–447. doi:10.1007/s10706-019-01035-4.
[16] Smaida, A., Haddadi, S., & Nechnech, A. (2019). Improvement of the mechanical performance of dune sand for using in flexible pavements. Construction and Building Materials, 208, 464–471. doi:10.1016/j.conbuildmat.2019.03.041.
[17] Daheur, E. G., Goual, I., Taibi, S., & Mitiche-Kettab, R. (2019). Effect of Dune Sand Incorporation on the Physical and Mechanical Behaviour of Tuff: (Experimental Investigation). Geotechnical and Geological Engineering, 37(3), 1687–1701. doi:10.1007/s10706-018-0715-4.
[18] Daheur, E. G., Taibi, S., Goual, I., & Li, Z. S. (2021). Hydro-mechanical behavior from small strain to failure of tuffs amended with dune sand – Application to pavements design in Saharan areas. Construction and Building Materials, 272, 121948. doi:10.1016/j.conbuildmat.2020.121948.
[19] Cherif Taiba, A., Mahmoudi, Y., Baille, W., Wichtmann, T., & Belkhatir, M. (2021). Threshold silt content dependency on particle morphology (shape and size) of granular materials: review with new evidence. Acta geotechnica Slovenica, 18(1), 28-40. doi:10.18690/actageotechslov.18.1.28-40.2021.
[20] Azaiez, H., Taiba, A. C., Mahmoudi, Y., & Belkhatir, M. (2021). Characterization of Granular Materials Treated with Fly Ash for Road Infrastructure Applications. Transportation Infrastructure Geotechnology, 8(2), 228–253. doi:10.1007/s40515-020-00135-6.
[21] Mahmoudi, Y., Cherif Taiba, A., Hazout, L., & Belkhatir, M. (2022). Comprehensive laboratory study on stress–strain of granular soils at constant global void ratio: combined effects of fabrics and silt content. Acta Geotechnica. doi:10.1007/s11440-022-01480-1.
[22] Boudia, A., & Berga, A. (2021). Effect of grain size and distribution on mechanical behavior of dune sand. Civil Engineering Journal (Iran), 7(8), 1355–1377. doi:10.28991/cej-2021-03091730.
[23] Abdellah, D., Gueddouda, M. K., Goual, I., Souli, H., & Ghembaza, M. S. (2020). Effect of landfill leachate on the hydromechanical behavior of bentonite-geomaterials mixture. Construction and Building Materials, 234, 117356. doi:10.1016/j.conbuildmat.2019.117356.
[24] Mekaideche, K., Derfouf, F. E. M., Laimeche, A., & Abou-Bekr, N. (2021). Influence of the hydric state and lime treatment on the thermal conductivity of a calcareous tufa. Civil Engineering Journal (Iran), 7(3), 419–430. doi:10.28991/cej-2021-03091663.
[25] Cherif Taiba, A., Mahmoudi, Y., Hazout, L., Belkhatir, M., & Baille, W. (2019). Evaluation of hydraulic conductivity through particle shape and packing density characteristics of sand–silt mixtures. Marine Georesources and Geotechnology, 37(10), 1175–1187. doi:10.1080/1064119X.2018.1539891.
[26] Goual, I., Goual, M. S., Taibi, S., & Abou-Bekr, N. (2011). Behaviour of unsaturated tuff- calcareous sand mixture on drying-wetting and triaxial paths. Geomechanics and Engineering, 3(4), 267–284. doi:10.12989/gae.2011.3.4.267.
[27] XP P94-041. (1995). Soil: investigation and testing. Granulometric description. Wet sieving method. AFNOR Standards, Paris, France. (In French).
[28] Alloul, B. (1981). Geological and geotechnical study of the calcareous and gypsum tuffs of Algeria with a view to their road development. PhD Thesis, University of Paris VI, Paris, France. (In French).
[29] Morsli, M. (2007). Contribution to the valorization of the tuffs in Saharan road engineering [Contribution to the valorization of the tuffs in Saharan road engineering]. Ph.D. Thesis, National Polytechnic School, Algiers, Algeria. (In French).
[30] NF EN ISO 17892-12. (2018). Geotechnical investigation and testing - Laboratory testing of soil - Part 12: determination of liquid and plastic limits. AFNOR Standards, Paris, France. (In French).
[31] NF EN 13286-2. (2010). Unbound and hydraulically bound mixtures - Part 2: test methods for laboratory reference density and water content - Proctor compaction. AFNOR Standards, Paris, France. (In French).
[32] NF EN 13286-47. (2012). Unbound and hydraulically bound mixtures - Part 47: test method for the determination of California bearing ratio, immediate bearing index and linear swelling. AFNOR Standards, Paris, France. (In French).
[33] NF EN ISO 17892-7. (2018). Geotechnical investigation and testing - Laboratory testing of soil - Part 7: unconfined compression test. AFNOR Standards, Paris, France. (In French).
[34] NF P98-232-3. (1993). Tests relating to pavements. Determination of the mechanical properties of materials treated with hydraulic bunders. Part 3: diametric compression test on sands and soils. AFNOR Standards, Paris, France. (In French).
[35] Dubois, V., Abriak, N. E., Zentar, R., & Ballivy, G. (2009). The use of marine sediments as a pavement base material. Waste Management, 29(2), 774–782. doi:10.1016/j.wasman.2008.05.004.
[36] Wang, D. X., Abriak, N. E., Zentar, R., & Xu, W. (2012). Solidification/stabilization of dredged marine sediments for road construction. Environmental technology, 33(1), 95-101. doi: 10.1080/09593330.2011.551840
[37] Fenzy, E. (1970). The current state of road technology in the Sahara. Technical report, Directorate of Infrastructure of the Saharan Organization, Ministry of Public Works, Ben Aknoun, Algiers, Algeria. (In French).
[38] The Unified Soil Classification System (USCS). The Unified Soil Classification System, Tech. Rep. Arch. Image Libr., pp. 1–28, 1977.
[39] LCPC - SETRA. (2000). Road earthworks guide - Realization of embankments and capping layers (2nd Ed.). Fascide I, General Principles. Available online: https://www.cerema.fr/fr/centre-ressources/boutique/realisation-remblais-couches-forme-gtr-fascicule-1-principes (accessed on February 2022).
[40] Moulay Omar, H. (2021). Geotechnical characterization of material deposits in the Adrar region: Applications in road engineering. Thesis, National Polytechnic School of Oran, Oran, Algeria. (In French).
[41] Naeini, S. A., & Ziaie-Moayed, R. (2009). Effect of plasticity index and reinforcement on the CBR value of soft clay. International Journal of Civil Engineering, 7(2), 124–130.
[42] Loualbia, H., Sebaibi, Y., Duc, M., Goual, I., & Feia, S. (2017). Effect of different drying methods on the mechanical behavior and the microstructure of an Algerian compacted limestone crust. Journal of Adhesion Science and Technology, 31(10), 1045–1060. doi:10.1080/01694243.2016.1242525.
[43] Soulié, F. (2008). Microscopic study of cohesion by capillarity in the wet granular mediums. European Journal of Environment and Civil Engineering, 12(3), 279-290. doi:10.1080/19648189.2008.9693014.
[44] Edet, A. (2018). Correlation Between Physiomechanical Parameters and Geotechnical Evaluations of Some Sandstones Along the Calabar/Odukpani–Ikom–Ogoja Highway Transect, Southeastern Nigeria. Geotechnical and Geological Engineering, 36(1), 135–149. doi:10.1007/s10706-017-0311-z.
[45] Katte, V. Y., Mfoyet, S. M., Manefouet, B., Wouatong, A. S. L., & Bezeng, L. A. (2019). Correlation of California Bearing Ratio (CBR) Value with Soil Properties of Road Subgrade Soil. Geotechnical and Geological Engineering, 37(1), 217–234. doi:10.1007/s10706-018-0604-x.
[46] González Farias, I., Araujo, W., & Ruiz, G. (2018). Prediction of California Bearing Ratio from Index Properties of Soils Using Parametric and Non-parametric Models. Geotechnical and Geological Engineering, 36(6), 3485–3498. doi:10.1007/s10706-018-0548-1.
[47] Messaouda Cherrak, Meriem Morsli, Ramdane Boutemeur, & Abderrahim Bali. (2015). Valorization of the Use of Calcareous Tuff and Dune Sand in Saharan Road Design. Journal of Civil Engineering and Architecture, 9(6). doi:10.17265/1934-7359/2015.06.004.
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.