Application of Tuned Mass Dampers for Structural Vibration Control: A State-of-the-art Review

Fatemeh Rahimi, Reza Aghayari, Bijan Samali

Abstract


Given the burgeoning demand for construction of structures and high-rise buildings, controlling the structural vibrations under earthquake and other external dynamic forces seems more important than ever. Vibration control devices can be classified into passive, active and hybrid control systems. The technologies commonly adopted to control vibration, reduce damage, and generally improve the structural performance, include, but not limited to, damping, vibration isolation, control of excitation forces, vibration absorber. Tuned Mass Dampers (TMDs) have become a popular tool for protecting structures from unpredictable vibrations because of their relatively simple principles, their relatively easy performance optimization as shown in numerous recent successful applications. This paper presents a critical review of active, passive, semi-active and hybrid control systems of TMD used for preserving structures against forces induced by earthquake or wind, and provides a comparison of their efficiency, and comparative advantages and disadvantages. Despite the importance and recent advancement in this field, previous review studies have only focused on either passive or active TMDs. Hence this review covers the theoretical background of all types of TMDs and discusses the structural, analytical, practical differences and the economic aspects of their application in structural control. Moreover, this study identifies and highlights a range of knowledge gaps in the existing studies within this area of research. Among these research gaps, we identified that the current practices in determining the principle natural frequency of TMDs needs improvement. Furthermore, there is an increasing need for more complex methods of analysis for both TMD and structures that consider their nonlinear behavior as this can significantly improve the prediction of structural response and in turn, the optimization of TMDs.


Keywords


Vibration Control; Tuned Mass Damper; Structural Response; Natural Frequency Tuning.

References


Abburu, S.a.S., Vibration Control in High-Rise Buildings for Multi-Hazard, 2015.Master's Thesis, Civil and Environmental Engineering, LSU, Baton Rouge, Louisiana. Available online: https://digitalcommons.lsu.edu/gradschool_theses/1991. (Accessed on: 10 Apr 2020).

Palacios-Quiñonero, F., J. Rubio-Massegu, J.M. Rossell, and H.R. Karimi, Recent Advances in Static Output-Feedback Controller Design with Applications to Vibration Control of Large Structures. Modeling, Identification and Control, 2014. 35(3): p. 169-190. doi:10.4173/mic.2014.3.4.

Koo, J.-H., A. Shukla, and M. Ahmadian, Dynamic Performance Analysis of Non-Linear Tuned Vibration Absorbers. Communications in Nonlinear Science and Numerical Simulation, 2008. 13(9): p. 1929-1937. doi:10.1016/j.cnsns.2007.03.020.

Fisco, N. and H. Adeli, Smart Structures: Part I—Active and Semi-Active Control. Scientia Iranica, 2011. 18(3): p. 275-284. doi:10.1016/j.scient.2011.05.034.

Kim, H.-S., C. Chang, and J.-W. Kang, Control Performance Evaluation of Semi-Active Tmd Subjected to Various Types of Loads. International Journal of Steel Structures, 2015. 15(3): p. 581-594. doi:10.1007/s13296-015-9006-6.

Gerges, R.R. and B.J. Vickery, Optimum Design of Pendulum‐Type Tuned Mass Dampers. The Structural Design of Tall and Special Buildings, 2005. 14(4): p. 353-368. doi:10.1002/tal.273.

Asai, T., Structural Control Strategies for Earthquake Response Reduction of Buildings, 2014.Ph.D. Thesis, University of Illinois at Urbana-Champaign, Civil and Environmental Engineering. Available online: http://hdl.handle.net/2142/49571. (Accessed on: 12 March 2020).

Leung, A.Y., H. Zhang, C. Cheng, and Y. Lee, Particle Swarm Optimization of Tmd by Non‐Stationary Base Excitation during Earthquake. Earthquake Engineering & Structural Dynamics, 2008. 37(9): p. 1223-1246.

Symans, M.D. and M.C. Constantinou, Semi-Active Control Systems for Seismic Protection of Structures: A State-of-the-Art Review. Engineering structures, 1999. 21(6): p. 469-487. doi:10.1016/S0141-0296(97)00225-3.

Spencer Jr, B. and S. Nagarajaiah, State of the Art of Structural Control. Journal of structural engineering, 2003. 129(7): p. 845-856. doi:10.1061/(ASCE)0733-9445(2003)129:7(845).

Eissa, M. and M. Sayed, A Comparison between Active and Passive Vibration Control of Non-Linear Simple Pendulum. Part Ii: Longitudinal Tuned Absorber and Negative Gφ and Gφn Feedback. Mathematical and Computational Applications, 2006. 11(2): p. 151-162. doi:10.3390/mca11020151.

Miah, M.S., E.N. Chatzi, V.K. Dertimanis, and F. Weber, Real‐Time Experimental Validation of a Novel Semi‐Active Control Scheme for Vibration Mitigation. Structural Control and Health Monitoring, 2017. 24(3): p. e1878. doi:10.1002/stc.1878.

Wu, S.-T., Y.-R. Chen, and S.-S. Wang, Two-Degree-of-Freedom Rotational-Pendulum Vibration Absorbers. Journal of Sound and Vibration, 2011. 330(6): p. 1052-1064. doi:10.1016/j.jsv.2010.09.028.

Desu, N.B., S. Deb, and A. Dutta, Coupled Tuned Mass Dampers for Control of Coupled Vibrations in Asymmetric Buildings. Structural Control and Health Monitoring, 2006. 13(5): p. 897-916. doi:10.1002/stc.64.

Shankar, K. and T. Balendra, Building (Vibration Control). Wind Engineers, JAWE, 2001. 2001(89): p. 429-456. doi:10.5359/jawe.2001.89_429.

Elias, S. and V. Matsagar, Research Developments in Vibration Control of Structures Using Passive Tuned Mass Dampers. Annual Reviews in Control, 2017. 44: p. 129-156.

Cheng, F.Y., H. Jiang, and K. Lou, Smart Structures: Innovative Systems for Seismic Response Control. 2008: CRC press.

Aly, A.M., Vibration Control of High-Rise Buildings for Wind: A Robust Passive and Active Tuned Mass Damper. Smart Structures and Systems, 2014. 13(3): p. 473-500. doi:10.12989/sss.2014.13.3.473.

Xu, K. and T. Igusa, Dynamic Characteristics of Multiple Substructures with Closely Spaced Frequencies. Earthquake engineering & structural dynamics, 1992. 21(12): p. 1059-1070. doi: 10.1002/eqe.4290211203.

Zhou, Z., Effectiveness of Tuned Mass Dampers in Mitigating Earthquake Ground Motions in Low and Medium Rise Buildings, 2014.Master's Thesis, Civil and Environmental Engineering, Rutgers University, New Brunswick, New Jersey. doi: 10.7282/T3BK19P4.

Housner, G.W., L.A. Bergman, T.K. Caughey, A.G. Chassiakos, R.O. Claus, S.F. Masri, R.E. Skelton, T. Soong, B. Spencer, and J.T. Yao, Structural Control: Past, Present, and Future. Journal of engineering mechanics, 1997. 123(9): p. 897-971. doi:10.1061/(ASCE)0733-9399(1997)123:9(897).

Jia, J., Dynamic Absorber, in Modern Earthquake Engineering, J. Jia, Editor. 2017, Springer. p. 743-782. doi:10.1007/978-3-642-31854-2_24.

Ahsan, R., S. Rana, and S.N. Ghani, Cost Optimum Design of Posttensioned I-Girder Bridge Using Global Optimization Algorithm. Journal of Structural Engineering, 2011. 138(2): p. 273-284. doi:10.1061/(ASCE)ST.1943-541X.0000458.

Yau, J.-D. and Y.-B. Yang, A Wideband Mtmd System for Reducing the Dynamic Response of Continuous Truss Bridges to Moving Train Loads. Engineering structures, 2004. 26(12): p. 1795-1807. doi:10.1016/j.engstruct.2004.06.015.

Lee, C.-L., Y.-T. Chen, L.-L. Chung, and Y.-P. Wang, Optimal Design Theories and Applications of Tuned Mass Dampers. Engineering structures, 2006. 28(1): p. 43-53. doi:10.1016/j.engstruct.2005.06.023.

Li, C. and W. Qu, Evaluation of Elastically Linked Dashpot Based Active Multiple Tuned Mass Dampers for Structures under Ground Acceleration. Engineering structures, 2004. 26(14): p. 2149-2160. Doi:10.1016/j.engstruct.2004.07.019.

Chang, C., Mass Dampers and Their Optimal Designs for Building Vibration Control. Engineering Structures, 1999. 21(5): p. 454-463.

Lin, C.-C., J.-F. Wang, and J.-M. Ueng, Vibration Control Identification of Seismically Excited Mdof Structure-Ptmd Systems. Journal of Sound and Vibration, 2001. 240(1): p. 87-115. doi:10.1006/jsvi.2000.3188.

Bakre, S. and R. Jangid, Optimum Multiple Tuned Mass Dampers for Base-Excited Damped Main System. International Journal of Structural Stability and Dynamics, 2004. 4(04): p. 527-542.

Rüdinger, F., Tuned Mass Damper with Nonlinear Viscous Damping. Journal of Sound and Vibration, 2007. 300(3-5): p. 932-948. doi:10.1016/j.jsv.2006.09.009.

Sgobba, S. and G.C. Marano, Optimum Design of Linear Tuned Mass Dampers for Structures with Nonlinear Behaviour. Mechanical Systems and Signal Processing, 2010. 24(6): p. 1739-1755. doi:10.1016/j.ymssp.2010.01.009.

Giaralis, A. and A. Taflanidis, Optimal Tuned Mass‐Damper‐Inerter (TMDI) Design for Seismically Excited Mdof Structures with Model Uncertainties Based on Reliability Criteria. Structural Control and Health Monitoring, 2018. 25(2): p. e2082. doi:10.1002/stc.2082.

Inceo, G., S and M. Gürgöze, Bending Vibrations of Beams Coupled by Several Double Spring-Mass Systems. Journal of Sound and Vibration, 2001. 243(2): p. 370-379. doi:10.1006/jsvi.2000.3442.

Rasouli, S. and M. Yahyai, Control of Response of Structures with Passive and Active Tuned Mass Dampers. The Structural Design of Tall Buildings, 2002. 11(1): p. 1-14. doi:10.1002/tal.181.

Wong, K. and Y. Chee, Energy Dissipation of Tuned Mass Dampers During Earthquake Excitations. The structural design of tall and special buildings, 2004. 13(2): p. 105-121. doi:10.1002/tal.244.

Krenk, S., Frequency Analysis of the Tuned Mass Damper. Journal of applied mechanics, 2005. 72(6): p. 936-942.

Hwang, J.-S., H. Kim, and J. Kim, Estimation of the Modal Mass of a Structure with a Tuned-Mass Damper Using H-Infinity Optimal Model Reduction. Engineering structures, 2006. 28(1): p. 34-42.

Li, C. and B. Cao, Hybrid Active Tuned Mass Dampers for Structures under the Ground Acceleration. Structural Control and Health Monitoring, 2015. 22(4): p. 757-773. doi:10.1002/stc.1716.

Xu, K. and T. Igusa, Dynamic Characteristics of Non‐Classically Damped Structures. Earthquake engineering & structural dynamics, 1991. 20(12): p. 1127-1144. Doi:10.1002/eqe.4290201204.

Yamaguchi, H. and N. Harnpornchai, Fundamental Characteristics of Multiple Tuned Mass Dampers for Suppressing Harmonically Forced Oscillations. Earthquake engineering & structural dynamics, 1993. 22(1): p. 51-62. doi: 10.1002/eqe.4290220105.

Abé, M. and Y. Fujino, Efficiency and Design Formulas of Multiple Tuned Mass Dampers (Mtmd). Doboku Gakkai Ronbunshu, 1993. 1993(465): p. 97-106.

Igusa, T. and K. Xu, Vibration Control Using Multiple Tuned Mass Dampers. Journal of sound and vibration, 1994. 175(4): p. 491-503.

Abé, M. and Y. Fujino, Dynamic Characterization of Multiple Tuned Mass Dampers and Some Design Formulas. Earthquake engineering & structural dynamics, 1994. 23(8): p. 813-835. doi: 10.1002/eqe.4290230802.

Kareem, A. and S. Kline, Performance of Multiple Mass Dampers under Random Loading. Journal of structural engineering, 1995. 121(2): p. 348-361. doi:10.1061/(ASCE)0733-9445(1995)121:2(348).

Hazra, B., A. Sadhu, A.J. Roffel, and S. Narasimhan, Hybrid Time‐Frequency Blind Source Separation Towards Ambient System Identification of Structures. Computer‐Aided Civil and Infrastructure Engineering, 2012. 27(5): p. 314-332. doi: 10.1111/j.1467-8667.2011.00732.x.

Sakr, T.A., Vibration Control of Buildings by Using Partial Floor Loads as Multiple Tuned Mass Dampers. HBRC journal, 2017. 13(2): p. 133-144. doi:10.1016/j.hbrcj.2015.04.004.

Vellar, L.S., S.P. Ontiveros-Pérez, L.F.F. Miguel, and L.F. Fadel Miguel, Robust Optimum Design of Multiple Tuned Mass Dampers for Vibration Control in Buildings Subjected to Seismic Excitation. Shock and Vibration, 2019. 2019. doi:10.1155/2019/9273714.

Suresh, L. and K. Mini, Effect of Multiple Tuned Mass Dampers for Vibration Control in High-Rise Buildings. Practice Periodical on Structural Design and Construction, 2019. 24(4): p. 04019031. doi:10.1061/(ASCE)SC.1943-5576.0000453.

Pinkaew, T. and Y. Fujino, Effectiveness of Semi-Active Tuned Mass Dampers under Harmonic Excitation. Engineering Structures, 2001. 23(7): p. 850-856. doi:10.1016/S0141-0296(00)00091-2.

Chen, G. and J. Wu, Optimal Placement of Multiple Tune Mass Dampers for Seismic Structures. Journal of Structural Engineering, 2001. 127(9): p. 1054-1062.

Debbarma, R. and S. Hazari, Mass Distribution of Multiple Tuned Mass Dampers for Vibration Control of Structures under Earthquake Load. Int J Emerg Technol Adv Eng, 2013. 3(8): p. 198-202.

Elias, S., V. Matsagar, and T.K. Datta, Effectiveness of Distributed Tuned Mass Dampers for Multi-Mode Control of Chimney under Earthquakes. Engineering Structures, 2016. 124: p. 1-16. doi:10.1016/j.engstruct.2016.06.006.

Elias, S., V. Matsagar, and T.K. Datta, Distributed Tuned Mass Dampers for Multi-Mode Control of Benchmark Building under Seismic Excitations. Journal of Earthquake Eng., 2019. 23(7): p. 1137-1172. doi:10.1080/13632469.2017.1351407.

Fadel Miguel, L.F., R.H. Lopez, L.F.F. Miguel, and A.J. Torii, A Novel Approach to the Optimum Design of Mtmds under Seismic Excitations. Structural Control and Health Monitoring, 2016. 23(11): p. 1290-1313. doi: 10.1002/stc.1845.

Stanikzai, M.H., S. Elias, and R. Rupakhety, Seismic Response Mitigation of Base-Isolated Buildings. Applied Sciences, 2020. 10(4): p. 1230.

Abburu, S.a.S., Vibration Control in High-Rise Buildings for Multi-Hazard. 2015.

Kamrani-Moghaddam, B., M. Rahimian, and A.K. Ghorbani-Tanha, Performance of Tuned Mass Dampers for Response Reduction of Structures under near-Field and Far-Field Seismic Excitations, in 4th International Conference on Earthquake Engineering. 2006: Taipei, Taiwan.

Pinelli, J.-P. and H. Gutierrez. Experimental Study of Tuned Mass Dampers. In Proceedings of the US National Conference on Earthquake Engineering. 2002. Earthquake Engineering Research Institute. doi:10.1088/1742-6596/744/1/012045.

Lee, J., The Role of the Aerodynamic Modifications of the Shapes of Tall Buildings, 2011.Master's Thesis, Civil and Environmental Engineering, Massachusetts Institute of Technology, Massachusetts Available online: http://hdl.handle.net/1721.1/66869 (Accessed on: 9 Apr 2020).

Casciati, F., G. Magonette, and F. Marazzi, Technology of Semiactive Devices and Applications in Vibration Mitigation. 2006: John Wiley & Sons. doi:10.1002/0470022914.

Yang, D.-H., J.-H. Shin, H. Lee, S.-K. Kim, and M.K. Kwak, Active Vibration Control of Structure by Active Mass Damper and Multi-Modal Negative Acceleration Feedback Control Algorithm. Journal of Sound and Vibration, 2017. 392: p. 18-30. doi:10.1016/j.jsv.2016.12.036.

Sadek, F., B. Mohraz, A.W. Taylor, and R.M. Chung, A Method of Estimating the Parameters of Tuned Mass Dampers for Seismic Applications. Earthquake Engineering & Structural Dynamics, 1997. 26(6): p. 617-635. doi:10.1002/(SICI)1096-9845(199706)26:6<617::AID-EQE664>3.0.CO;2-Z.

Chang, C. and W. Qu, Unified Dynamic Absorber Design Formulas for Wind‐Induced Vibration Control of Tall Buildings. The structural design of tall buildings, 1998. 7(2): p. 147-166. doi:10.1002/(SICI)1099-1794(199806)7:2<147::AID-TAL107>3.0.CO;2-3.

Rana, R. and T. Soong, Parametric Study and Simplified Design of Tuned Mass Dampers. Engineering structures, 1998. 20(3): p. 193-204. doi:10.1016/S0141-0296(97)00078-3.

Li, C. and Y. Liu, Further Characteristics for Multiple Tuned Mass Dampers. Journal of Structural Engineering, 2002. 128(10): p. 1362-1365. doi:10.1061/(ASCE)0733-9445(2002)128:10(1362).

Ueng, J.M., C.C. Lin, and J.F. Wang, Practical Design Issues of Tuned Mass Dampers for Torsionally Coupled Buildings under Earthquake Loadings. The Structural Design of Tall and Special Buildings, 2008. 17(1): p. 133-165. doi:10.1002/tal.336.

Hoang, N., Y. Fujino, and P. Warnitchai, Optimal Tuned Mass Damper for Seismic Applications and Practical Design Formulas. Engineering Structures, 2008. 30(3): p. 707-715. doi:10.1016/j.engstruct.2007.05.007.

Ok, S.-Y., J. Song, and K.-S. Park, Development of Optimal Design Formula for Bi-Tuned Mass Dampers Using Multi-Objective Optimization. Journal of Sound and Vibration, 2009. 322(1-2): p. 60-77. doi:10.1016/j.jsv.2008.11.023.

Moon, K.S., Vertically Distributed Multiple Tuned Mass Dampers in Tall Buildings: Performance Analysis and Preliminary Design. The Structural Design of Tall and Special Buildings, 2010. 19(3): p. 347-366. doi:10.1002/tal.499.

Lu, X. and J. Chen, Mitigation of Wind‐Induced Response of Shanghai Center Tower by Tuned Mass Damper. The Structural Design of Tall and Special Buildings, 2011. 20(4): p. 435-452.

Aly, A.M., Proposed Robust Tuned Mass Damper for Response Mitigation in Buildings Exposed to Multidirectional Wind. The structural design of tall and special Buildings, 2014. 23(9): p. 664-691. doi:10.1002/tal.1068.

Farghaly, A.A. and M. Salem Ahmed, Optimum Design of Tmd System for Tall Buildings. ISRN Civil Engineering, 2012. 2012. doi:10.5402/2012/716469.

Moutinho, C., An Alternative Methodology for Designing Tuned Mass Dampers to Reduce Seismic Vibrations in Building Structures. Earthquake Engineering & Structural Dynamics, 2012. 41(14): p. 2059-2073. doi:10.1002/eqe.2174.

De Angelis, M., S. Perno, and A. Reggio, Dynamic Response and Optimal Design of Structures with Large Mass Ratio Tmd. Earthquake Engineering & Structural Dynamics, 2012. 41(1): p. 41-60. doi:10.1002/eqe.1117.

Anh, N. and N. Nguyen, Design of Tmd for Damped Linear Structures Using the Dual Criterion of Equivalent Linearization Method. International Journal of Mechanical Sciences, 2013. 77: p. 164-170. doi:10.1016/j.ijmecsci.2013.09.014.

Elias, S. and V. Matsagar, Optimum Tuned Mass Damper for Wind and Earthquake Response Control of High-Rise Building, in Advances in Structural Engineering. 2015, Springer. p. 1475-1487. doi:10.1007/978-81-322-2193-7_113.

Marian, L. and A. Giaralis, Optimal Design of a Novel Tuned Mass-Damper–Inerter (Tmdi) Passive Vibration Control Configuration for Stochastically Support-Excited Structural Systems. Probabilistic Engineering Mechanics, 2014. 38: p. 156-164. doi:10.1016/j.probengmech.2014.03.007.

Kwon, I.Y., H.T. Yang, P.K. Hansma, and C.J. Randall, Bioinspired Tuned Mass Damper for Mitigation of Wind-Induced Building Excitation. Journal of Structural Engineering, (2017). 143(10): p. 04017142. doi:10.1061/(ASCE)ST.1943-541X.0001881.

Yan, N., C.M. Wang, and T. Balendra, Optimal Damper Characteristics of Atmd for Buildings under Wind Loads. Journal of Structural Engineering, 1999. 125(12): p. 1376-1383. doi:10.1061/(ASCE)0733-9445(1999)125:12(1376).

Yamamoto, M., S. Aizawa, M. Higashino, and K. Toyama, Practical Applications of Active Mass Dampers with Hydraulic Actuator. Earthquake engineering & structural dynamics, 2001. 30(11): p. 1697-1717. doi:10.1002/eqe.88.

Li, C. and Y. Liu, Optimum Multiple Tuned Mass Dampers for Structures under the Ground Acceleration Based on the Uniform Distribution of System Parameters. Earthquake engineering & structural dynamics, 2003. 32(5): p. 671-690. doi:10.1002/eqe.128.

Lee, C.L. and Y.P. Wang, Seismic Structural Control Using an Electric Servomotor Active Mass Driver System. Earthquake engineering & structural dynamics, 2004. 33(6): p. 737-754. doi:10.1002/eqe.373.

Chung, L., C. Lin, and S. Chu, Optimal Direct Output Feedback of Structural Control. Journal of Engineering Mechanics, 1993. 119(11): p. 2157-2173. doi:10.1061/(ASCE)0733-9399(1993)119:11(2157).

Pourzeynali, S., S. Salimi, and H.E. Kalesar, Robust Multi-Objective Optimization Design of Tmd Control Device to Reduce Tall Building Responses against Earthquake Excitations Using Genetic Algorithms. Scientia Iranica, 2013. 20(2): p. 207-221. doi:10.1016/j.scient.2012.11.015.

Yagiz, N. and Y. Hacioglu, Backstepping Control of a Vehicle with Active Suspensions. Control Engineering Practice, 2008. 16(12): p. 1457-1467. doi:10.1016/j.conengprac.2008.04.003.

Kahya, V. and O. Araz, Series Multiple Tuned Mass Dampers for Vibration Control of High-Speed Railway Bridges, in Insights and Innovations in Structural Engineering, Mechanics and Computation, A. Zingoni, Editor. 2016, CRC Press: London. doi:10.1201/9781315641645-25.

Debnath, N., S. Deb, and A. Dutta, Multi-Modal Vibration Control of Truss Bridges with Tuned Mass Dampers under General Loading. Journal of Vibration and Control, 2016. 22(20): p. 4121-4140. doi:10.1177/1077546315571172.

Cao, H. and Q. Li, New Control Strategies for Active Tuned Mass Damper Systems. Computers & structures, 2004. 82(27): p. 2341-2350. doi:10.1016/j.compstruc.2004.05.010.

Hrovat, D., P. Barak, and M. Rabins, Semi-Active Versus Passive or Active Tuned Mass Dampers for Structural Control. Journal of Engineering Mechanics, 1983. 109(3): p. 691-705. doi:10.1016/j.proeng.2011.07.350.

Zhang, L., L. Hong, J.S. Dhupia, S. Johnson, Z. Qaiser, and Z. Zhou. A Novel Semi-Active Tuned Mass Damper with Tunable Stiffness. in 2018 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM). 2018. Auckland: IEEE. doi:10.1109/AIM.2018.8452301.

Casciati, F., J. Rodellar, and U. Yildirim, Active and Semi-Active Control of Structures–Theory and Applications: A Review of Recent Advances. Journal of Intelligent Material Systems and Structures, 2012. 23(11): p. 1181-1195. doi:10.1177/1045389X12445029.

Mohtat, A. and E. Dehghan-Niri, Generalized Framework for Robust Design of Tuned Mass Damper Systems. Journal of Sound and Vibration, 2011. 330(5): p. 902-922. doi:10.1016/j.jsv.2010.09.007.

Hayati, S., W. Song, M. Kreger, J. Lindner, and R. Berry, Disruptive Tuned Mass Damper for Response Reduction of Civil Engineering Structures, in Integrating Science, Engineering & Policy. 2018: Los Angeles, California.

Quaranta, G., F. Mollaioli, and G. Monti, Effectiveness of Design Procedures for Linear Tmd Installed on Inelastic Structures under Pulse-Like Ground Motion. Earthquakes and Structures, 2016. 10(1): p. 239-260. doi:10.12989/eas.2016.10.1.239.

Sun, C., Structural Vibration Control of Nonlinear Systems Using the Smart Tuned Mass Damper (Stmd) and the Nonlinear Tuned Mass Damper (Ntmd) in Parallel, 2013.Ph.D. Thesis, Civil and Environmental Engineering, Rice University, Houston, Texas. Available online: https://hdl.handle.net/1911/77526. (Accessed on: 18 Apr 2020).

Den Hartog, J.P., Mechanical Vibrations. 1985, Massachusetts: Courier Corporation.

Gerges, R.R. and B.J. Vickery, Design of Tuned Mass Dampers Incorporating Wire Rope Springs: Part Ii: Simple Design Method. Engineering structures, 2005. 27(5): p. 662-674. doi:10.1016/j.engstruct.2004.12.014.

Rustighi, E., M. Brennan, and B. Mace, Real-Time Control of a Shape Memory Alloy Adaptive Tuned Vibration Absorber. Smart Materials and Structures, 2005. 14(6): p. 1184. doi:10.1088/0964-1726/14/6/011.

Rüdinger, F., Tuned Mass Damper with Fractional Derivative Damping. Engineering Structures, 2006. 28(13): p. 1774-1779. doi:10.1016/j.engstruct.2006.01.006.

Wong, K., Seismic Energy Dissipation of Inelastic Structures with Tuned Mass Dampers. Journal of engineering mechanics, 2008. 134(2): p. 163-172. doi:10.1061/(ASCE)0733-9399(2008)134:2(163).

.

.

.

.

.

.


Full Text: PDF

DOI: 10.28991/cej-2020-03091571

Refbacks

  • There are currently no refbacks.




Copyright (c) 2020 Fatemeh Rahimi

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message