Insights Into the Load-Carrying Mechanism and Interactive Effects of Dissimilar Piles in Cushioned Piled Rafts
Downloads
Disconnecting pile heads from the raft has gained wide application because the gravel and geogrid layers filling the space between them create a more even pressure distribution and reduce differential settlement. However, due to the complexity of modelling the multiple interfaces in the superstructure-foundation-subsoil system, previous findings on load-transfer mechanisms, interaction effects, and group optimization remain incomplete. Moreover, the common analytical approach employed for understanding the load transfer mechanism is the “unit cell’ concept, which cannot fully capture dissimilarity in the group. To address these limitations, this study aims to develop an analytical framework for predicting the load-settlement response of cushioned piled rafts with dissimilar piles. The proposed method simplifies the cushion-pile-soil interaction using a Winkler-type Spring model, while a hyperbolic load-transfer function captures the nonlinear pile-soil behavior. The model was verified against existing experimental and showed close agreement. It successfully captured the load-sharing mechanism, confirming that stiffer, longer, or larger-diameter piles attract a disproportionately higher share of the load. The novelty of this work lies in the establishment of an analytical model based on the principles of dissimilar pile groups but extended to include cushion force transmission, a critical integration that provides a realistic tool for practice.
Downloads
[1] Taghavi Ghalesari, A., & Janalizadeh Choobbasti, A. (2018). Numerical analysis of settlement and bearing behaviour of piled raft in Babol clay. European Journal of Environmental and Civil Engineering, 22(8), 978-1003. doi:10.1080/19648189.2016.1229230.
[2] Poulos, H. G. (2016). Tall building foundations: design methods and applications. Innovative Infrastructure Solutions, 1(1), 10. doi:10.1007/s41062-016-0010-2.
[3] Leung, Y. F., Klar, A., & Soga, K. (2010). Theoretical Study on Pile Length Optimization of Pile Groups and Piled Rafts. Journal of Geotechnical and Geoenvironmental Engineering, 136(2), 319–330. doi:10.1061/(asce)gt.1943-5606.0000206.
[4] Zhang, Q. Q., Liu, S. W., Feng, R. F., Qian, J. G., & Cui, C. Y. (2020). Finite element prediction on the response of non-uniformly arranged pile groups considering progressive failure of pile-soil system. Frontiers of Structural and Civil Engineering, 14(4), 961–982. doi:10.1007/s11709-020-0632-5.
[5] Burland, J. B., Broms, B. B., & De Mello, V. F. (1978). Behaviour of foundations and structures. Proceeding of 9th International Conference on Soil Mechanics and Foundation Engineering, 10-15 July, 1977, Tokyo, Japan.
[6] Fioravante, V. (2011). Load transfer from a raft to a pile with an interposed layer. Geotechnique, 61(2), 121–132. doi:10.1680/geot.7.00187.
[7] Guo, Y., Liu, Y., Wei, Y., Zhao, J., & Uge, B. U. (2023). Load-Settlement Response of Cushioned Piled Rafts with Varying Pile Lengths to Retaining Wall Movement. Geotechnical and Geological Engineering, 41(5), 3093–3113. doi:10.1007/s10706-023-02446-0.
[8] Mu, L., Chen, W., Huang, M., & Lu, Q. (2020). Hybrid Method for Predicting the Response of a Pile-Raft Foundation to Adjacent Braced Excavation. International Journal of Geomechanics, 20(4). doi:10.1061/(asce)gm.1943-5622.0001627.
[9] Uge, B. U., Guo, Y., Zhao, J., Liu, Y., Shumuye, E. D., Mehmood, M., & Tekle, M. H. (2025). A review of the load-carrying mechanism of connected and disconnected piled-raft foundations under static and dynamic loading. Sādhanā, 50(4), 1-31. doi:10.1007/s12046-025-02837-4.
[10] Wu, T., Sun, Z., Tan, W., Kasu, C. M., & Gong, J. (2022). Response of vertically-loaded pile in spatially-variable cement-treated soil. PLOS ONE, 17(4), e0266975. doi:10.1371/journal.pone.0266975.
[11] Zhang, Y., Huang, J., Xie, J., Jiang, S. H., & Zeng, C. (2025). Deep learning-based calibration of resistance factors for pile groups with load tests. Acta Geotechnica, 20(9), 4355–4367. doi:10.1007/s11440-025-02634-7.
[12] Abdrabbo, F. M., & El-Wakil, A. Z. (2015). Behavior of pile group incorporating dissimilar pile embedded into sand. Alexandria Engineering Journal, 54(2), 175–182. doi:10.1016/j.aej.2014.11.001.
[13] Liu, Y., Gu, S., Duan, S., & Hou, S. (2024). Load Settlement Response of Composite Foundation of Variable Pile Diameters. International Journal of Geomechanics, 24(9). doi:10.1061/ijgnai.gmeng-9629.
[14] Azizkandi, A. S., Aghamolaei, M., & Hasanaklou, S. H. (2020). Evaluation of dynamic response of connected and non-connected piled raft systems using shaking table tests. Soil Dynamics and Earthquake Engineering, 139, 106366. doi:10.1016/j.soildyn.2020.106366.
[15] Bagheri, M., Ranjbar Malidarreh, N., Ghaseminejad, V., & Asgari, A. (2025). Seismic resilience assessment of RC superstructures on long–short combined piled raft foundations: 3D SSI modeling with pounding effects. Structures, 81, 110176. doi:10.1016/j.istruc.2025.110176.
[16] Akbari, A., & Eslami, A. (2025). Performance of Composite Piled Raft Foundations with Long and Short Piles Under Static and Seismic Loading. Geotechnical and Geological Engineering, 43(5), 188. doi:10.1007/s10706-025-03136-9.
[17] Pengfei, L. I., Renwang, L. I. A. N. G., & Jingluo, C. A. I. (2018). Experimental evaluation of pile-soil load sharing ratio for composite foundation with long and short piles. China Sciencepaper, 13(13), 1467.
[18] Lin, C., Liu, Q., Su, Y., Yue, C., & Zeng, L. (2024). Load transfer of the disconnected pile. Acta Geotechnica, 19(8), 5673–5684. doi:10.1007/s11440-024-02285-0.
[19] Malekkhani, M. J., & Bazaz, J. B. (2021). An Analytical Model to Study the Behavior of Non-connected Piled Rafts with Granular Cushion Subjected to Vertical Load. International Journal of Civil Engineering, 19(8), 941–956. doi:10.1007/s40999-021-00611-1.
[20] Jeong, S., & Cho, J. (2014). Proposed nonlinear 3-D analytical method for piled raft foundations. Computers and Geotechnics, 59, 112–126. doi:10.1016/j.compgeo.2014.02.009.
[21] Ko, J., Cho, J., & Jeong, S. (2017). Nonlinear 3D interactive analysis of superstructure and piled raft foundation. Engineering Structures, 143, 204–218. doi:10.1016/j.engstruct.2017.04.026.
[22] Halder, P., & Manna, B. (2021). Load transfer mechanism for connected and disconnected piled raft: a comparative study. Acta Geotechnica, 17(7), 3033–3045. doi:10.1007/s11440-021-01409-0.
[23] Alhassani, A. M. J., & Aljorany, A. N. (2023). Experimental and Numerical Modeling of Connected and Disconnected Piled Raft. KSCE Journal of Civil Engineering, 27(6), 2442–2454. doi:10.1007/s12205-023-0437-x.
[24] Liu, S., Zhang, Q., Cui, C., Feng, R., & Cui, W. (2021). A simplified approach for the response of pile groups composed of dissimilar piles. Structures, 34, 4548–4559. doi:10.1016/j.istruc.2021.10.063.
[25] Guo, Y., Zhao, J., Li, M., Liu, Y., Hou, S., & Uge, B. U. (2024). Elasto-Plastic Analysis for Load-Settlement Prediction of Vertically Loaded Cushioned Piled-Rafts with Unequal Pile Lengths. Soil Mechanics and Foundation Engineering, 61(2), 120–129. doi:10.1007/s11204-024-09952-0.
[26] Dong, X., Tan, X., Lu, Z., Zhang, P., Zha, F., & Xu, L. (2024). Reliability analysis of two–pile group in spatially variable soil considering differential settlement. Ocean Engineering, 307(118182). doi:10.1016/j.oceaneng.2024.118182.
[27] Zhang, Q., Liu, S., Zhang, S., Zhang, J., & Wang, K. (2016). Simplified non-linear approaches for response of a single pile and pile groups considering progressive deformation of pile–soil system. Soils and Foundations, 56(3), 473–484. doi:10.1016/j.sandf.2016.04.013.
[28] Guo, Y., Lv, C., Hou, S., & Liu, Y. (2021). Experimental Study on the Pile-Soil Synergistic Mechanism of Composite Foundation with Rigid Long and Short Piles. Mathematical Problems in Engineering, 2021, 1–15. doi:10.1155/2021/6657116.
[29] Cao, M., & Zhou, A. (2022). Fictitious pile method for fixed-head pile groups with dissimilar piles subjected to horizontal loading. Soils and Foundations, 62(5). doi:10.1016/j.sandf.2022.101212.
[30] Nguyen, D. D. C., Kim, D. S., & Jo, S. B. (2014). Parametric study for optimal design of large piled raft foundations on sand. Computers and Geotechnics, 55, 14–26. doi:10.1016/j.compgeo.2013.07.014.
[31] Shrestha, S., Ravichandran, N., & Rahbari, P. (2018). Geotechnical Design and Design Optimization of a Pile-Raft Foundation for Tall Onshore Wind Turbines in Multilayered Clay. International Journal of Geomechanics, 18(2), 04017143. doi:10.1061/(asce)gm.1943-5622.0001061.
[32] Zheng, J.-J., Liu, Y., Pan, Y.-T., & Hu, J. (2018). Statistical Evaluation of the Load-Settlement Response of a Multicolumn Composite Foundation. International Journal of Geomechanics, 18(4), 04018015. doi:10.1061/(asce)gm.1943-5622.0001124.
[33] Zhao, M., Zhang, L., & Yang, M. (2006). Settlement calculation for long-short composite piled raft foundation. Journal of Central South University of Technology, 13(6), 749–754. doi:10.1007/s11771-006-0026-4.
[34] Hu, K., Jiang, K., Gou, X., Wei, W., Yan, L., Zhou, T., Guo, Z., & Chen, G. (2023). Dissimilar Pile Raft Foundation Behavior under Eccentric Vertical Load in Elastic Medium. Buildings, 13(12), 3040. doi:10.3390/buildings13123040.
[35] Lv, C. Y., Guo, Y. C., Li, Y. H., Hu-Yan, A. Di, & Yao, W. M. (2023). Experimental study on the horizontal bearing characteristics of long-short-pile composite foundation. Geomechanics and Engineering, 33(4), 341–352. doi:10.12989/gae.2023.33.4.341.
[36] Uge, B. U., & Guo, Y.-C. (2023). Experimental study on load sharing characteristics of long-short CFG pile composite foundation adjacent to rigid retaining wall rotating about its base. Journal of Engineering Research, 11(1), 125–135. doi:10.36909/jer.13241.
[37] Zhu, Z. R., Guan, W., Han, K., Wu, H. G., Zhao, S. Q., & Liu, X. (2023). Experimental Study on the Dynamic Characteristics of a New Long-Short Pile Composite Foundation under Long-Term Train Load. Shock and Vibration, 7032053, 1–16. doi:10.1155/2023/7032053.
[38] Bagheri, M., Jamkhaneh, M. E., & Samali, B. (2018). Effect of Seismic Soil–Pile–Structure Interaction on Mid- and High-Rise Steel Buildings Resting on a Group of Pile Foundations. International Journal of Geomechanics, 18(9), 04018103–1. doi:10.1061/(asce)gm.1943-5622.0001222.
[39] Guo, Y., Gu, S., Jin, J., & Li, M. (2021). Study on the earth pressure of a foundation pit adjacent to a composite foundation with rigid-flexible and long-short piles. PLOS ONE, 16(5), e0251985. doi:10.1371/journal.pone.0251985.
[40] Gao, F., Cheng, X., Wang, W., Lv, Q., & Cheng, X. (2024). Experimental Study on the Bearing Characteristics of Rigid-Flexible Long-Short Pile Composite Foundations in Thick Collapsible Loess Areas. KSCE Journal of Civil Engineering, 28(5), 1690–1701. doi:10.1007/s12205-024-0052-5.
[41] Zheng, J. J., Abusharar, S. W., & Wang, X. Z. (2008). Three-dimensional nonlinear finite element modeling of composite foundation formed by CFG-lime piles. Computers and Geotechnics, 35(4), 637–643. doi:10.1016/j.compgeo.2007.10.002.
[42] Tong, J. X., Sun, X. H., Luo, P. F., Jia, N., Yang, X. H., & Yan, M. L. (2014). Study on the design method of different thickness-diameter ratios for composite foundation with rigid long and short piles. Applied Mechanics and Materials, 580–583, 723–728. doi:10.4028/www.scientific.net/AMM.580-583.723.
[43] Ding, J., Wang, W., Zhao, T., Feng, J., & Zhang, P. (2013). The Dynamic Characteristic Experimental Method on the Composite Foundation with Rigid-Flexible Compound Piles. Open Journal of Civil Engineering, 3(2), 94–98. doi:10.4236/ojce.2013.32010.
[44] Liu, K., Xie, X., & Liu, H. (2010). Performance of rigid-flexible-pile foundation with cushion. Proceedings of the Institution of Civil Engineers - Geotechnical Engineering, 163(4), 221–227. doi:10.1680/geng.2010.163.4.221.
[45] Yan, F., & Huang, X. (2014). Experiment Research of Bearing Behavior on Lime-Soil Pile and CFG Pile Rigid-Flexible Pile Composite Subgrade. Proceedings of Ground Improvement and Geosynthetics, 40–48. doi:10.1061/9780784413401.004.
[46] Yang, Y., & Zhang, J. (2022). Analysis of Features of Long and Short Pile Composite Foundation in High-Rise Buildings. Soil Mechanics and Foundation Engineering, 59(1), 92–101. doi:10.1007/s11204-022-09788-6.
[47] Jais, I. B. M., Rahman, S. N. S. S. A., & Lat, D. C. (2025). 3D Numerical Analysis of Piled Raft Foundation on Soft Soil Improved by Stone Columns. Transportation Infrastructure Geotechnology, 12(1), 81. doi:10.1007/s40515-025-00539-2.
[48] Fang, X., Shen, C., Wang, C., Guo, Y., & Wang, L. (2024). Study on bearing characteristic of multi-pile composite foundation with biocemented coral sand pile. Journal of Building Engineering, 98, 111297. doi:10.1016/j.jobe.2024.111297.
[49] Zhang, E., Yu, L., & He, X. (2017). Analysis of Action Mechanism for Rigid Flexible Pile Composite Foundation. Revista Tecnica De La Facultad De Ingenieria Universidad Del Zulia, 39(11), 260–270. doi:10.21311/001.39.11.32.
[50] Oh, J.-H., Kim, S.-H., Hwang, H.-J., Chung, C.-K., & Park, H.-G. (2024). Device for Load-Redistribution between Existing Piles and Underpinning Micropiles. Journal of Geotechnical and Geoenvironmental Engineering, 150(12), 12706. doi:10.1061/jggefk.gteng-12706.
[51] Uge, B. U., & Guo, Y.-C. (2020). CFG Pile Composite Foundation: Its Engineering Applications and Research Advances. Journal of Engineering, 2020, 1–26. doi:10.1155/2020/5343472.
[52] Xie, Y., & Chi, S. (2020). Optimization Method of Reducing the Differential Settlements of Piled Raft Foundations Based on Pile-to-Pile Interaction Theory. Advances in Civil Engineering, 2020, 1–14. doi:10.1155/2020/1521876.
[53] Maheetharan, A., Raveendiraraj, A., Qusous, O., & May, R. (2016). Design of pile configuration for optimum raft performance. Proceedings of the Institution of Civil Engineers: Geotechnical Engineering, 169(2), 139–152. doi:10.1680/jgeen.15.00047.
[54] Poulos, H. G. (1989). Pile behaviour—theory and application. Géotechnique, 39(3), 365–415. doi:10.1680/geot.1989.39.3.365.
[55] Wang, A. D., Wang, W. D., Huang, M. S., & Wu, J. B. (2016). Interaction factor for large pile groups. Geotechnique Letters, 6(1), 58–65. doi:10.1680/jgele.15.00139.
[56] Mylonakis, G., & Gazetas, G. (1998). Settlement and additional internal forces of grouped piles in layered soil. Geotechnique, 48(1), 55–72. doi:10.1680/geot.1998.48.1.55.
[57] Poulos, H. G., & Davis, E. H. (1980). Pile foundation analysis and design (No. Monograph). John Wiley & Sons, Hoboken, United States.
[58] Sales, M. M., & Curado, T. da S. (2018). Interaction factor between piles: Limits on using the conventional elastic approach in pile group analysis. Soils and Rocks, 41(1), 49–60. doi:10.28927/SR.411049.
[59] Xu, J., Xu, X., & Yao, W. (2022). New calculation method for the settlement of long-short-pile composite foundation based on virtual soil-pile model. Arabian Journal of Geosciences, 15(9), 870. doi:10.1007/s12517-022-10028-2.
[60] Mu, L., Chen, Q., Huang, M., & Basack, S. (2017). Hybrid Approach for Rigid Piled-Raft Foundations Subjected to Coupled Loads in Layered Soils. International Journal of Geomechanics, 17(5), 04016122. doi:10.1061/(asce)gm.1943-5622.0000825.
[61] Jeong, S., Park, J., & Chang, D. (2024). An approximate numerical analysis of rafts and piled-rafts foundation. Computers and Geotechnics, 168, 106108. doi:10.1016/j.compgeo.2024.106108.
[62] El-Garhy, B. M. (2022). A Simplified Method for the Nonlinear Analysis of Composite Piled Raft Foundation. Geotechnical and Geological Engineering, 40(9), 4357–4375. doi:10.1007/s10706-022-02159-w.
[63] Liang, F., Chen, L., & Han, J. (2009). Integral equation method for analysis of piled rafts with dissimilar piles under vertical loading. Computers and Geotechnics, 36(3), 419–426. doi:10.1016/j.compgeo.2008.08.007.
[64] Kim, K. N., Lee, S. H., Kim, K. S., Chung, C. K., Kim, M. M., & Lee, H. S. (2001). Optimal pile arrangement for minimizing differential settlements in piled raft foundations. Computers and Geotechnics, 28(4), 235-253. doi:10.1016/S0266-352X(01)00002-7.
[65] Randolph, M. F., & Wroth, C. P. (1978). Analysis of Deformation of Vertically Loaded Piles. Journal of the Geotechnical Engineering Division, 104(12), 1465–1488. doi:10.1061/ajgeb6.0000729.
[66] Cooke, R. W. (1974). The settlement of friction pile foundations. Proceedings, Conference on Tall Buildings, 2-5 December, 1974, Kuala Lumpur, Malaysia.
[67] Liu, G., Li, J., Liu, C., & Li, P. (2025). Progressive failure analysis of axially loaded single pile embedded in unsaturated soils based on LTM coupling with SDM. Computers and Geotechnics, 179, 107036. doi:10.1016/j.compgeo.2024.107036.
[68] Zhang, Q., Liu, S., Feng, R., & Li, X. (2018). Analytical Method for Prediction of Progressive Deformation Mechanism of Existing Piles Due to Excavation Beneath a Pile-Supported Building. International Journal of Civil Engineering, 17(6), 751–763. doi:10.1007/s40999-018-0309-9.
[69] Liu, Y., & Vanapalli, S. K. (2022). Modified Shear Displacement Method for Analysis of Piles in Unsaturated Expansive Soils Considering Influence of Environmental Factors. International Journal of Geomechanics, 22(6), 04022069. doi:10.1061/(asce)gm.1943-5622.0002320.
[70] Bateman, A. H., Crispin, J. J., Vardanega, P. J., & Mylonakis, G. E. (2022). Theoretical t-z Curves for Axially Loaded Piles. Journal of Geotechnical and Geoenvironmental Engineering, 148(7), 04022052. doi:10.1061/(asce)gt.1943-5606.0002753.
[71] Bohn, C., Lopes dos Santos, A., & Frank, R. (2017). Development of Axial Pile Load Transfer Curves Based on Instrumented Load Tests. Journal of Geotechnical and Geoenvironmental Engineering, 143(1), 04016081. doi:10.1061/(asce)gt.1943-5606.0001579.
[72] Zhou, Z., Zhang, Z., Chen, C., Xu, F., Xu, T., Zhu, L., & Liu, T. (2022). Application of load transfer method for bored pile in loess area. European Journal of Environmental and Civil Engineering, 26(10), 4457–4475. doi:10.1080/19648189.2020.1854125.
[73] Abchir, Z., Burlon, S., Frank, R., Habert, J., & Legrand, S. (2016). T-Z Curves for Piles from Pressuremeter Test Results. Geotechnique, 66(2), 137–148. doi:10.1680/jgeot.15.P.097.
[74] Xu, L. Y., Shao, W. Da, Xue, Y. Y., Cai, F., & Li, Y. Y. (2019). A simplified piecewise-hyperbolic softening model of skin friction for axially loaded piles. Computers and Geotechnics, 108, 7–16. doi:10.1016/j.compgeo.2018.12.018.
[75] Zhang, Q., Li, L., & Chen, Y. (2014). Analysis of Compression Pile Response Using a Softening Model, a Hyperbolic Model of Skin Friction, and a Bilinear Model of End Resistance. Journal of Engineering Mechanics, 140(1), 102–111. doi:10.1061/(asce)em.1943-7889.0000640.
[76] Li, L., Lai, N., Zhao, X., Zhu, T., & Su, Z. (2023). A generalized elastoplastic load-transfer model for axially loaded piles in clay: Incorporation of modulus degradation and skin friction softening. Computers and Geotechnics, 161, 105594. doi:10.1016/j.compgeo.2023.105594.
[77] Anoyatis, G., Mylonakis, G., & Tsikas, A. (2019). An analytical continuum model for axially loaded end-bearing piles in inhomogeneous soil. International Journal for Numerical and Analytical Methods in Geomechanics, 43(6), 1162–1183. doi:10.1002/nag.2886.
[78] Xia, Z., & Zou, J. (2017). Simplified Approach for Settlement Analysis of Vertically Loaded Pile. Journal of Engineering Mechanics, 143(11), 04017124–1. doi:10.1061/(asce)em.1943-7889.0001334.
[79] Liu, J., Xiao, H. B., Tang, J., & Li, Q. S. (2004). Analysis of load-transfer of single pile in layered soil. Computers and Geotechnics, 31(2), 127–135. doi:10.1016/j.compgeo.2004.01.001.
[80] Liu, Y., Jiang, S., Vanapalli, S. K., & Li, J. (2024). Mechanical Behavior of Pile Foundations Associated with Water Infiltration in Unsaturated Collapsible Soils. International Journal of Geomechanics, 24(6). doi:10.1061/ijgnai.gmeng-9279.
[81] Chong-fu, W. U., Wei-chao, G. U. O., Yu-nong, L. I., & Rui, T. I. E. (2016). Calculation of neutral surface depth and pile-soil stress ratio of rigid pile composite foundation considering influence of negative friction. Chinese Journal of Geotechnical Engineering, 38(2), 278-287. doi:10.11779/CJGE201602011. (In Chinese).
[82] Uge, B. U., Guo, Y., Zhao, J., Liu, Y., Li, Y., Hou, S., Lv, C., & Xia, Y. (2025). Load-transfer analysis of disconnected piled raft in unsaturated soils: Application and validation of the modified shear displacement method. Results in Engineering, 28. doi:10.1016/j.rineng.2025.107684.
[83] Cao, F., Ye, C., Wu, Z., Zhao, Z., & Sun, H. (2024). Settlement Calculation of Semi-Rigid Pile Composite Foundation on Ultra-Soft Soil under Embankment Load. Buildings, 14(7), 1954. doi:10.3390/buildings14071954.
[84] GB 50007-2011. (2011). Code for Design of Building Foundation. China National Standards, Beijing, China.
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.![]()















