Improving Thermal Comfort and Air Quality: PET and CO₂ Evaluation of School Courtyard’s Orientation
Downloads
This study aims to investigate the thermal conditions related to the variations in the school courtyard’s orientation, focusing on mass temperature (Tm), outdoor air temperature, and Physiological Equivalent Temperature (PET). A qualitative methodology based on ENVI-met software was adopted. Simulations for the existing school building were performed in the four basic orientations on 21 March and 21 September to assess the thermal impact of the courtyard’s orientations. Results showed that orientation produced slight but meaningful differences in Tm, with variations of 0.16°C in September and 0.20°C in March. Though modest, these differences become significant when scaled to the large mass of the school buildings, where even small reductions affect energy demand and comfort. For outdoor air temperature, the south orientation achieved reductions of 0.53–1.13°C in September and 1.1–1.9°C in March compared to ambient conditions. PET and wind maps supported these findings, with the south orientation allowing better airflow and better thermal comfort. Furthermore, analysis of CO₂ concentration confirmed that the south-facing courtyard provided the healthiest air quality. The study highlights that courtyard orientation should not be overlooked in large educational buildings, as even slight orientation-driven improvements become critical, reinforcing the importance of integrating orientation into holistic passive design strategies.
Downloads
[1] Salameh, M. (2024). Modifying School Courtyard Design to Optimize Thermal Conditions and Energy Consumption in a Hot Arid Climate. Journal of Architectural Engineering, 30(4), 4024033. doi:10.1061/jaeied.aeeng-1813.
[2] Dias Pereira, L., Raimondo, D., Corgnati, S. P., & Gameiro Da Silva, M. (2014). Energy consumption in schools - A review paper. Renewable and Sustainable Energy Reviews, 40, 911–922. doi:10.1016/j.rser.2014.08.010.
[3] Zhang, A., Bokel, R., van den Dobbelsteen, A., Sun, Y., Huang, Q., & Zhang, Q. (2017). The effect of geometry parameters on energy and thermal performance of school buildings in cold climates of China. Sustainability (Switzerland), 9(10), 1708. doi:10.3390/su9101708.
[4] Mahyuddin, N., Samzadeh, M., Zaid, S. M., & Ab Ghafar, N. (2021). Towards nearly zero energy building concept – visual comfort and energy efficiency assessments in a classroom. Open House International, 47(1), 167-187. doi:10.1108/ohi-05-2021-0099.
[5] Emirates Green Building. (2019). Energy and Water Performance of DUBAI SCHOOLS. Bea Fact Sheets School Final, Emirates Green Building Council, Dubai, United Arab Emirates. Available online: https://emiratesgbc.org/wp-content/uploads/2020/06/BEA-Fact-Sheets-School-Final.pdf (accessed on November 2025).
[6] Edarabia. (2023) UAE School Holidays (2026), Edarabia, Dubai, United Arab Emirates. Available online: https://www.edarabia.com/school-holidays-uae/#:~:text=UAE%20School%20Holidays%20(2024)&text=The%20United%20Arab%20Emirates %20(UAE,793%2C295%20students%20(private%20schools) (accessed on November 2025).
[7] Al-Khatatbeh, B. J., & Ma’Bdeh, S. N. (2017). Improving visual comfort and energy efficiency in existing classrooms using passive daylighting techniques. Energy Procedia, 136, 102–108. doi:10.1016/j.egypro.2017.10.294.
[8] Abanomi, W., & Jones, P. (2005). Passive cooling and energy conservation design strategies of school buildings in hot, arid region: Riyadh, Saudi Arabia. Proceedings of the international conference passive and low energy cooling for the built environment, 19-21 May, 2005, Santorini, Greece.
[9] Zomorodian, Z. S., & Nasrollahi, F. (2013). Architectural design optimization of school buildings for reduction of energy demand in hot and dry climates of Iran. International Journal of Architectural Engineering & Urban Planning, 23(1), 41–50.
[10] Harputlugil, G. U., Hensen, J., & Celebi, G. (2011). A prospect to develop thermally robust outline design and to explore its applicability to the different climate necessities of Turkey. International Journal of Low-Carbon Technologies, 6(1), 76–85. doi:10.1093/ijlct/ctq050.
[11] Gil-Baez, M., Padura, Á. B., & Huelva, M. M. (2019). Passive actions in the building envelope to enhance sustainability of schools in a Mediterranean climate. Energy, 167(C), 144–158. doi:10.1016/j.energy.2018.10.094.
[12] Hong, T., Koo, C., & Jeong, K. (2012). A decision support model for reducing electric energy consumption in elementary school facilities. Applied Energy, 95, 253–266. doi:10.1016/j.apenergy.2012.02.052.
[13] Ramli, N. H., Masri, M. H., Zafrullah, M., Taib, H. M., & Hamid, N. A. (2012). A Comparative Study of Green School Guidelines. Procedia - Social and Behavioral Sciences, 50, 462–471. doi:10.1016/j.sbspro.2012.08.050.
[14] Matsuoka, R. H., & Kaplan, R. (2008). People needs in the urban landscape: Analysis of Landscape and Urban Planning contributions. Landscape and Urban Planning, 84(1), 7–19. doi:10.1016/j.landurbplan.2007.09.009.
[15] EL-Nwsany, R. I., Maarouf, I., & Abd el-Aal, W. (2019). Water management as a vital factor for a sustainable school. Alexandria Engineering Journal, 58(1), 303–313. doi:10.1016/j.aej.2018.12.012.
[16] Heracleous, C., Michael, A., Savvides, A., & Hayles, C. (2021). Climate change resilience of school premises in Cyprus: An examination of retrofit approaches and their implications on thermal and energy performance. Journal of Building Engineering, 44, 103358. doi:10.1016/j.jobe.2021.103358.
[17] Salameh, M., Abu-Hijleh, B., & Touqan, B. (2024). Impact of courtyard orientation on thermal performance of school buildings’ temperature. Urban Climate, 54, 101853. doi:10.1016/j.uclim.2024.101853.
[18] McGee, C., Reardon, C., & Clarke, D. (2017). Orientation. Your Home, Australian Government, Canberra, Australia. Available online: http://www.yourhome.gov.au/passive-design/orientation (accessed on November 2025).
[19] Shrestha, M., & Rijal, H. B. (2023). Investigation on Summer Thermal Comfort and Passive Thermal Improvements in Naturally Ventilated Nepalese School Buildings. Energies, 16(3), 1251. doi:10.3390/en16031251.
[20] Karimimoshaver, M., & Shahrak, M. S. (2022). The effect of height and orientation of buildings on thermal comfort. Sustainable Cities and Society, 79, 103720. doi:10.1016/j.scs.2022.103720.
[21] Abdallah, A. S. H., Mahmoud, R. M. A., & Aloshan, M. A. (2025). Optimizing Urban Spaces: A Parametric Approach to Enhancing Outdoor Recreation Between Residential Areas in Riyadh, Saudi Arabia. Buildings, 15(9), 1527. doi:10.3390/buildings15091527.
[22] Abuhussain, M. A., Al-Tamimi, N., Alotaibi, B. S., Singh, M. K., Kumar, S., & Elnaklah, R. (2022). Impact of Courtyard Concept on Energy Efficiency and Home Privacy in Saudi Arabia. Energies, 15(15), 5637. doi:10.3390/en15155637.
[23] Sun, Q., Luo, Z., & Bai, L. (2023). The Impact of Internal Courtyard Configuration on Thermal Performance of Long Strip Houses. Buildings, 13(2), 371. doi:10.3390/buildings13020371.
[24] Liedl, P., Hausladen, G., & de Saldanha, M. (2011). Building to Suit the Climate. De Gruyter Brill, Berlin, Germany. doi:10.1515/9783034608787.
[25] Sadafi, N., Salleh, E., Haw, L. C., & Jaafar, Z. (2011). Evaluating thermal effects of internal courtyard in a tropical terrace house by computational simulation. Energy and Buildings, 43(4), 887–893. doi:10.1016/j.enbuild.2010.12.009.
[26] Jara, E. ángel R., de la Flor, F. J. S., Domínguez, S. Á., Lissén, J. M. S., & Casado, A. R. (2017). Characterizing the air temperature drop in Mediterranean courtyards from monitoring campaigns. Sustainability (Switzerland), 9(8), 1401. doi:10.3390/su9081401.
[27] Modi, S., IIiyasu Sanke Isyaku, Timothy Marcus Kogi, Amos Danladi, Bilkisu Priscilla Sambo, & Emmanuel Adamu Gado. (2022). Orientation as a panacea for improving the Thermal Performance of a fully enclosed courtyard in a typical tropical climate. Journal of Environmental Science and Economics, 1(3), 51–59. doi:10.56556/jescae.v1i3.240.
[28] Diz-Mellado, E., López-Cabeza, V. P., Rivera-Gómez, C., Galán-Marín, C., Rojas-Fernández, J., & Nikolopoulou, M. (2021). Extending the adaptive thermal comfort models for courtyards. Building and Environment, 203, 108094. doi:10.1016/j.buildenv.2021.108094.
[29] Li, M., Jin, Y., & Guo, J. (2022). Dynamic characteristics and adaptive design methods of enclosed courtyard: A case study of a single-story courtyard dwelling in China. Building and Environment, 223, 109445. doi:10.1016/j.buildenv.2022.109445.
[30] Wah, Y., & Lot, B. (2017). Examination of Courtyard Dimensions and Proportions in Universiti Teknologi Malaysia Buildings. International Journal of Real Estate Studies, 11(2).
[31] Mundra, S., & Kannamma, D. (2019). Effect of Courtyard on Comfort-Study of thermal performance characteristics of courtyards in hot and humid climate. Proceedings of the Architectural Science Association (ANZAScA), 26-28 November, 2020, Roorkee, India.
[32] Salameh, M., & Touqan, B. (2024). Optimizing educational environments: microclimate analysis and energy efficiency through courtyard orientation in UAE schools. Frontiers in Built Environment, 10, 1448743. doi:10.3389/fbuil.2024.1448743.
[33] Sun, H., Owen, J. S., Almazmumi, S., Liu, C., Mohammadi, M., Dik, A., Jimenez-Bescos, C., & Calautit, J. K. (2024). Pollutant cross-transmission in courtyard buildings: Wind tunnel experiments and computational fluid dynamics (CFD) evaluation. Building and Environment, 264, 111919. doi:10.1016/j.buildenv.2024.111919.
[34] Ferrari, S., & Tendas, L. (2024). Ventilation and pollutant dispersion in a group of courtyard buildings with a diagonal wind. EPJ Web of Conferences, 299, 1011. doi:10.1051/epjconf/202429901011.
[35] Sharples, S., & Bensalem, R. (2001). Airflow in courtyard and atrium buildings in the urban environment: A win tunnel study. Solar Energy, 70(3), 237–244. doi:10.1016/S0038-092X(00)00092-X.
[36] Balah, E. M., Shokry, H., Hagishima, A., & Mahmoud, H. (2024). Reversed cooling and heating performance of modernized courtyard envelope in hot-arid climates: a case study at an educational campus. Clean Technologies and Environmental Policy, 26(12), 4521–4542. doi:10.1007/s10098-024-02833-y.
[37] Martinelli, L., & Matzarakis, A. (2017). Influence of height/width proportions on the thermal comfort of courtyard typology for Italian climate zones. Sustainable Cities and Society, 29, 97–106. doi:10.1016/j.scs.2016.12.004.
[38] Forouzandeh, A. (2018). Numerical modeling validation for the microclimate thermal condition of semi-closed courtyard spaces between buildings. Sustainable Cities and Society, 36, 327–345. doi:10.1016/j.scs.2017.07.025.
[39] Hegazy, I. R., & Qurnfulah, E. M. (2020). Thermal comfort of urban spaces using simulation tools exploring street orientation influence of on the outdoor thermal comfort: A case study of Jeddah, Saudi Arabia. International Journal of Low-Carbon Technologies, 15(4), 594–606. doi:10.1093/ijlct/ctaa028.
[40] Verma, L. A., & Bano, F. (2023). Socio-Environmental Sustainability of Traditional Courtyard Houses of Lucknow and Varanasi. U.Porto Journal of Engineering, 9(1), 72–103. doi:10.24840/2183-6493_009-001_001438.
[41] Dervishi, S., & Baçi, N. (2023). Early design evaluation of low-rise school building morphology on energy performance: Climatic contexts of Southeast Europe. Energy, 269, 126790. doi:10.1016/j.energy.2023.126790.
[42] UAE maps 2025, UAE Travel Guide, Dubai, United Arab Emirates. Available online: http://emiratesvoyage.com/uae-maps/ (accessed on November 2025).
[43] 2GIS, Novosibirsk, Russia. Available online: https://2gis.ae/sharjah/geo/13933750081633894?m=55.441692%2C25.352723%2 F16.4%2Fp%2F1.09%2Fr%2F-15.85 (accessed on November 2025).
[44] Google maps, Mountain View, United States. Available online: https://www.google.com/maps/place/6029:+That+Al+Netaqain+Girls+ Schools/@25.3940745,55.4876186,629a,35y,39.28t/data=!3m1!1e3!4m6!3m5!1s0x3e5f5874b268149f:0xfb998da900a1825b!8m2!3d25.3978378!4d55.4867104!16s%2Fg%2F1yg56gvtf?entry=ttu (accessed on November 2025).
[45] Khalfan, M., & Sharples, S. (2016). Thermal comfort analysis for the first Passivhaus project in QATAR. Proceedings of the SBE16 Dubai, Dubai, United Arab Emirates, 17-19 January, 2016, Dubai, United Arab Emirates.
[46] Feroz, S. M. (2014). Achieving thermal comfort by applying passive cooling strategies to courtyard houses in Dubai (UAE) Master Thesis, The British University in Dubai, Dubai, United Arab Emirates.
[47] Al-Sallal, K. A. (2010). Daylighting and visual performance: Evaluation of classroom design issues in the UAE. International Journal of Low-Carbon Technologies, 5(4), 201–209. doi:10.1093/ijlct/ctq025.
[48] A holistic microclimate model. (2024). PET and PET* (PET Reviewed). Available online: https://envi-met.info/doku.php?id=apps%3Abiomet_pet (accessed on November 2025).
[49] Kin, E., Forsch, S., & Glickmans, L. (2021). Cooler buildings in a warming South Asia. World Bank Blogs, Washington, United States. Available online: https://blogs.worldbank.org/en/endpovertyinsouthasia/cooler-buildings-warming-south-asia (accessed on November 2025).
[50] Bhatia, A. (2020). HVAC Cooling Load Calculations and Principles. Course M318 (5 PDH), PDH online, Fairfax, United States.
[51] Ghaffarianhoseini, A., Berardi, U., & Ghaffarianhoseini, A. (2015). Thermal performance characteristics of unshaded courtyards in hot and humid climates. Building and Environment, 87, 154–168. doi:10.1016/j.buildenv.2015.02.001.
[52] Alvarez, E. G., Mueller, C. T., & Norford, L. K. (2022). Dynamic thermal performance of structurally optimized concrete floor slabs. In Building Simulation Conference Proceedings (Vol. 17, pp. 989–996). IBPSA. doi:10.26868/25222708.2021.31052.
[53] CO2METER. (2025). Carbon Dioxide Levels Chart, Ormond Beach, United States. Available online: https://www.co2meter.com/blogs/news/carbon-dioxide-indoor-levels-chart?srsltid=AfmBOorFUfKfiElUUcWhyKcgL712oJvwvyeyrzllc1V5Y IhIjUJe4PXB (accessed on November 2025).
[54] Habibi, S. (2024). The effect of building orientation on energy efficiency. Clean Technologies and Environmental Policy, 26(4), 1315–1330. doi:10.1007/s10098-023-02695-w.
[55] Zheng, Z., Xiao, J., Yang, Y., Xu, F., Zhou, J., & Liu, H. (2024). Optimization of exterior wall insulation in office buildings based on wall orientation: Economic, energy and carbon saving potential in China. Energy, 290, 130300. doi:10.1016/j.energy.2024.130300.
[56] Mangkuto, R. A., Tresna, D. N. A. T., Hermawan, I. M., Pradipta, J., Jamala, N., Paramita, B., & Atthaillah. (2024). Experiment and simulation to determine the optimum orientation of building-integrated photovoltaic on tropical building façades considering annual daylight performance and energy yield. Energy and Built Environment, 5(3), 414–425. doi:10.1016/j.enbenv.2023.01.002.
[57] Dai, J., Wang, J., Bart, D., & Gao, W. (2023). The impact of building enclosure type and building orientation on indoor thermal comfort -A case study of Kashgar in China. Case Studies in Thermal Engineering, 49, 103291. doi:10.1016/j.csite.2023.103291.
[58] Muhy Al-Din, S. S., Ahmad Nia, H., & Rahbarianyazd, R. (2023). Enhancing Sustainability in Building Design: Hybrid Approaches for Evaluating the Impact of Building Orientation on Thermal Comfort in Semi-Arid Climates. Sustainability (Switzerland), 15(20), 15180. doi:10.3390/su152015180.
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.![]()















