The Influence of Nanodiamonds and Aluminum Oxide Nanoparticles on the Structure and Properties of High-Strength Concrete
Downloads
High-performance concrete (HPC) is an important construction material that can be improved with nano-additives. In this study, the modification of HPC with KHA-HC nanodiamond and nano aluminum oxide (NA) admixtures was investigated; the admixture rate was applied in the range of 0-1.4% in 0.2% increments. The rheology, density, compressive and flexural strength, water absorption, and microstructure properties were investigated; the results showed that the KHA-HC nanodiamond showed higher efficiency than NA. Compared with HPC without nano-additives, the strength properties of HPC with the most optimal content of nano-additives, 0.6% KHA-HC and 1.0% NA, were improved by 47.1% and 17.0% for compressive strength and by 44.9% and 16.3% for flexural strength. Water absorption decreased by 33.0% and 26.0%, respectively. Also, with optimal dosages of nano-additives, an improvement in the rheology of the HPC mixture was recorded. The complex modification of HPC 0.6% KHA-HC and 1.0% NA provides a synergistic effect and maximum improvements in properties: the increase in compressive strength was 58.2%; flexural strength - 54.1%; decrease in water absorption - 49.1%. HPC modified by nano-additives has an improved macro- and microstructure. The two types of nano-additives’ effectiveness, KHA-HC and NA, both separately and together in HPC technology for additional improvement of their operational properties, has been proven.
Downloads
[1] Abdul Sahib, M. Q., Farzam, M., & Sukkar, K. A. (2023). Development and Performance Evaluation of UHPC and HPC Using Eco-Friendly Additions as Substitute Cementitious Materials with Low Cost. Buildings, 13(8), 2078. doi:10.3390/buildings13082078.
[2] Tamov, M. M., Rudenko, O. V., & Salib, M. I. F. (2025). Modeling of Shear Strength of Ultra-High-Performance Concrete Beams Using Statistical Learning Tools. Modern Trends in Construction, Urban and Territorial Planning, 4(2), 7–20. doi:10.23947/2949-1835-2025-4-2-7-20.
[3] Huang, P., Li, Y., Ding, F., Liu, X., Bi, X., & Xu, T. (2025). Real-Time Temperature Effects on Dynamic Impact Mechanical Properties of Hybrid Fiber-Reinforced High-Performance Concrete. Materials, 18(14), 3241. doi:10.3390/ma18143241.
[4] Wang, L., Tian, X., Pan, Y., Wu, D., Xu, S., Wang, H., Tian, X., Xu, Y., Guo, H., & Zou, M. (2025). The Properties of Self-Compacting Ultra-High Performance Concrete with Different Types of Mineral Admixtures. Coatings, 15(5), 591. doi:10.3390/coatings15050591.
[5] Adibinia, A., Dehghan Khalili, H., Mohebbi, M. M., Momeni, M., Moradi, P., Ghouhestani, S., & Poorkarimi, A. (2025). Biomaterial-Assisted Self-Healing for Crack Reduction in High-Performance Centrifugal Concrete Piles. Buildings, 15(7), 1064. doi:10.3390/buildings15071064.
[6] Mailyan, L. R., Stel’makh, S. A., Shcherban’, E. M., Zherebtsov, Y. V., & Al-Tulaikhi, M. M. (2021). Research of physicomechanical and design characteristics of vibrated, centrifuged and vibro-centrifuged concretes. Advanced Engineering Research (Rostov-on-Don), 21(1), 5–13. doi:10.23947/2687-1653-2021-21-1-5-13.
[7] Birol, T., & Avcıalp, A. (2025). Impact of Macro-Polypropylene Fiber on the Mechanical Properties of Ultra-High-Performance Concrete. Polymers, 17(9), 1232. doi:10.3390/polym17091232.
[8] Xu, J., Li, Y., Huang, Y., Yuan, G., Cao, Z., Zhang, W., Zheng, H., Zang, Y., Mao, X., & Li, M. (2025). Understanding the Role of Quartz Powder Content and Fineness on the Micro-Structure and Mechanical Performance of UHPC. Buildings, 15(9), 1513. doi:10.3390/buildings15091513.
[9] Zhu, P., Du, S., Heng, P., Zhang, L., Zhang, S., & Wu, Y. (2025). Investigation on Mix Proportions of Ultra-High Performance Concrete with Recycled Powder and Recycled Sand. Buildings, 15(7), 1048. doi:10.3390/buildings15071048.
[10] Puzatova, A. V., Dmitrieva, M. A., Tovpinets, A. O., & Leitsin, V. V. (2024). Study of Structural Defects Evolution in Fine-Grained Concrete Using Computed Tomography Methods. Advanced Engineering Research (Rostov-on-Don), 24(3), 227–237. doi:10.23947/2687-1653-2024-24-3-227-237.
[11] Özkılıç, Y. O., Karalar, M., Aksoylu, C., Beskopylny, A. N., Stel’makh, S. A., Shcherban, E. M., Qaidi, S., Pereira, I. da S. A., Monteiro, S. N., & Azevedo, A. R. G. (2023). Shear performance of reinforced expansive concrete beams utilizing aluminium waste. Journal of Materials Research and Technology, 24, 5433–5448. doi:10.1016/j.jmrt.2023.04.120.
[12] Stel’makh, S. A., Shcherban’, E. M., Beskopylny, A. N., Mailyan, L. R., Meskhi, B., Shilov, A. A., Evtushenko, A., Chernil’nik, A., El’shaeva, D., Karalar, M., Özkılıç, Y. O., & Aksoylu, C. (2023). Physical, Mechanical and Structural Characteristics of Sulfur Concrete with Bitumen Modified Sulfur and Fly Ash. Journal of Composites Science, 7(9), 356. doi:10.3390/jcs7090356.
[13] Hamakareem, M., Muhedin, D., Hama Rash, A., Qadir, S., & Khodakarami, L. (2024). Toward Optimizing Coarse Aggregate Types and Sizes in High-strength Concrete. ARO-The Scientific Journal of Koya University, 12(2), 33-43.
[14] Kim, K. M., Lee, S., & Cho, J. Y. (2019). Effect of maximum coarse aggregate size on dynamic compressive strength of high-strength concrete. International Journal of Impact Engineering, 125, 107-116. doi:10.1016/j.ijimpeng.2018.11.003.
[15] Shaaban, M., Edris, W. F., Odah, E., Ezz, M. S., & Al-Sayed, A. A. K. A. (2023). A Green Way of Producing High Strength Concrete Utilizing Recycled Concrete. Civil Engineering Journal (Iran), 9(10), 2467–2485. doi:10.28991/CEJ-2023-09-10-08.
[16] Yang, Q., Yang, Q., Peng, X., Xia, K., & Xu, B. (2025). A Review of the Effects of Nanomaterials on the Properties of Concrete. Buildings, 15(13), 2363. doi:10.3390/buildings15132363.
[17] Mohanty, A., Biswal, D. R., Pradhan, S. K., & Mohanty, M. (2025). Impact of Nanomaterials on the Mechanical Strength and Durability of Pavement Quality Concrete: A Comprehensive Review. Eng, 6(4), 66. doi:10.3390/eng6040066.
[18] Bautista-Gutierrez, K. P., Herrera-May, A. L., Santamaría-López, J. M., Honorato-Moreno, A., & Zamora-Castro, S. A. (2019). Recent progress in nanomaterials for modern concrete infrastructure: Advantages and challenges. Materials, 12(21), 3548. doi:10.3390/ma12213548.
[19] Choi, Y. C. (2025). The Effect of Colloidal Nano-Silica on the Initial Hydration of High-Volume Fly Ash Cement. Materials, 18(12), 2769. doi:10.3390/ma18122769.
[20] Chen, X. F., Zhang, X. C., & Yan, G. H. (2025). Multiscale Investigation of Modified Recycled Aggregate Concrete on Sulfate Attack Resistance. Materials, 18(7), 1450. doi:10.3390/ma18071450.
[21] Zeng, P., Abbas, M. A. A. M., Ran, X., & Li, P. (2025). Impermeability, Strength and Microstructure of Concrete Modified by Nano-Silica and Expansive Agent. Journal of Composites Science, 9(3), 108. doi:10.3390/jcs9030108.
[22] Li, X., Yang, W., Wan, S., Li, S., Shi, Z., & Wu, H. (2025). Effects of SiO2 with Different Particle Sizes on the Self-Repairing Properties of Microbial Mineralized Cement Mortar. Applied Sciences (Switzerland), 15(4), 2098. doi:10.3390/app15042098.
[23] Guan, D., Pan, T., Guo, R., Wei, Y., Qi, R., Fu, C., Zhang, Z., & Zhu, Y. (2024). Fractal and Multifractal Analysis of Microscopic Pore Structure of UHPC Matrix Modified with Nano Silica. Fractal and Fractional, 8(6), 360. doi:10.3390/fractalfract8060360.
[24] Guo, D., Guo, M., Zhou, Y., & Zhu, Z. (2024). Use of nano-silica to improve the performance of LC3-UHPC: Mechanical behavior and microstructural characteristics. Construction and Building Materials, 411, 134280. doi:10.1016/j.conbuildmat.2023.134280.
[25] Ghafari, E., Arezoumandi, M., Costa, H., & Júlio, E. (2015). Influence of nano-silica addition in the durability of UHPC. Construction and Building Materials, 94, 181–188. doi:10.1016/j.conbuildmat.2015.07.009.
[26] Golewski, G. L. (2024). Determination of Fracture Mechanic Parameters of Concretes Based on Cement Matrix Enhanced by Fly Ash and Nano-Silica. Materials, 17(17), 4230. doi:10.3390/ma17174230.
[27] Sridhar, R., Aosai, P., Imjai, T., Setkit, M., Shirkol, A., & Laory, I. (2024). Influence of Nanoparticles and PVA Fibers on Concrete and Mortar on Microstructural and Durability Properties. Fibers, 12(7), 54. doi:10.3390/fib12070054.
[28] Li, S., Chen, Y., Tang, C., Wang, J., Liu, R., & Wang, H. (2022). Experimental and Theoretical Study on Carbonization Coefficient Model of NS/SAP Concrete. Buildings, 12(12), 2227. doi:10.3390/buildings12122227.
[29] Nie, L., Li, X., Li, J., Zhu, B., & Lin, Q. (2022). Analysis of High Performance Concrete Mixed with Nano-Silica in Front of Sulfate Attack. Materials, 15(21), 7614. doi:10.3390/ma15217614.
[30] Poudyal, L., Adhikari, K., & Won, M. (2021). Nano calcium carbonate (Caco3) as a reliable, durable, and environment-friendly alternative to diminishing fly ash. Materials, 14(13), 3729. doi:10.3390/ma14133729.
[31] Poudyal, L., Adhikari, K., & Won, M. (2021). Mechanical and durability properties of Portland limestone cement (PLC) incorporated with nano calcium carbonate (CaCO3). Materials, 14(4), 1–19. doi:10.3390/ma14040905.
[32] Chang, C., Ning, H., Song, M., Ma, Y., Wang, X., Ketekun, B. T., Kawkabi, K. W., & Long, X. (2025). Enhancing mechanical properties of high-strength recycled concrete with basalt fiber and nano-calcium carbonate: Experimental and numerical investigations. Construction and Building Materials, 489, 142264. doi:10.1016/j.conbuildmat.2025.142264.
[33] Shah, H. A., Wang, Y., Banthia, N., & Meng, W. (2025). Enhancing nano-CaCO3 dispersion with cellulose nanocrystals for high-strength low-carbon concrete. Cement and Concrete Composites, 164, 106227. doi:10.1016/j.cemconcomp.2025.106227.
[34] Shen, D., Kang, J., Shao, H., Liu, C., Li, M., & Chen, X. (2023). Cracking failure behavior of high strength concrete containing nano-CaCO3 at early age. Cement and Concrete Composites, 139, 104996. doi:10.1016/j.cemconcomp.2023.104996.
[35] Hosan, A., & Shaikh, F. U. A. (2021). Compressive strength development and durability properties of high volume slag and slag-fly ash blended concretes containing nano-CaCO3. Journal of Materials Research and Technology, 10, 1310–1322. doi:10.1016/j.jmrt.2021.01.001.
[36] Dang, V. P., Noh, H. W., & Kim, D. J. (2024). Effects of combined nanoparticles on dynamic strength of ultra-high-performance fiber-reinforced concrete. Journal of Building Engineering, 96, 110508. doi:10.1016/j.jobe.2024.110508.
[37] Zhang, H., Wang, Z., Zhang, T., & Li, Z. (2024). Foam Stabilization Process for Nano-Al2O3 and Its Effect on Mechanical Properties of Foamed Concrete. Nanomaterials, 14(18), 1516. doi:10.3390/nano14181516.
[38] Chu, H., Wang, Q., Gao, L., Jiang, J., & Wang, F. (2022). An Approach of Producing Ultra-High-Performance Concrete with High Elastic Modulus by Nano-Al2O3: A Preliminary Study. Materials, 15(22), 8118. doi:10.3390/ma15228118.
[39] Moghaddam, H. H., Lotfollahi-Yaghin, M. A., & Maleki, A. (2025). Comprehensive analysis of mechanical characteristics in self-compacting concrete (SCC) with aluminum oxide (Al2O3) nanoparticles and glass fibers: An experimental and analytical investigation. Case Studies in Construction Materials, 22, 4095. doi:10.1016/j.cscm.2024.e04095.
[40] Ahmed, D. N. Y., & Alkhafaji, F. F. (2020). Enhancements and Mechanisms of Nano Alumina (Al2O3) on Wear Resistance and Microstructure Characteristics of Concrete Pavement. IOP Conference Series: Materials Science and Engineering, 871(1), 12001. doi:10.1088/1757-899X/871/1/012001.
[41] Elahi, N., & Zeinalipour-Yazdi, C. D. (2025). Advances in the Synthesis of Carbon Nanomaterials Towards Their Application in Biomedical Engineering and Medicine. C, 11(2), 35. doi:10.3390/c11020035.
[42] Panich, A., Froumin, N., Aleksenskii, A., & Chizhikova, A. (2025). XPS Study of Grafting Paramagnetic Ions onto the Surface of Detonation Nanodiamonds. Nanomaterials, 15(4), 260. doi:10.3390/nano15040260.
[43] Zhou, S., Handschuh-Wang, S., & Wang, T. (2024). Deposition of Diamond Coatings on Ultrathin Microdrills for PCB Board Drilling. Materials, 17(22), 5593. doi:10.3390/ma17225593.
[44] Ding, H., Pan, Z., Loh, Y. M., Wang, C., & Tsoi, J. K. H. (2024). Effects of Nano-Diamond-Coated Milling Bits on Cutting Dental Zirconia. Coatings, 14(4), 473. doi:10.3390/coatings14040473.
[45] Zhuang, S., Cao, Y., Song, W., Zhang, P., & Choi, S. B. (2024). Effect of Additives on Tribological Performance of Magnetorheological Fluids. Micromachines, 15(2), 270. doi:10.3390/mi15020270.
[46] Lu, T., Chen, Y., Sun, M., Chen, Y., Tu, W., Zhou, Y., Li, X., & Hu, T. (2025). Multifunctional Carbon-Based Nanocomposite Hydrogels for Wound Healing and Health Management. Gels, 11(5), 345. doi:10.3390/gels11050345.
[47] Esen, M., Yilmaz, A. C., & Kavak, H. (2025). Structural and Tribological Analysis of Multilayer Carbon-Based Nanostructures Deposited via Modified Electron Cyclotron Resonance–Chemical Vapor Deposition. Applied Sciences (Switzerland), 15(6), 3402. doi:10.3390/app15063402.
[48] Piya, A. K., Yang, L., Emami, N., & Morina, A. (2025). Effect of Nanodiamonds on Friction Reduction Performance in Presence of Organic and Inorganic Friction Modifiers. Lubricants, 13(1), 1. doi:10.3390/lubricants13010001.
[49] Speranza, G. (2021). Carbon nanomaterials: Synthesis, functionalization and sensing applications. Nanomaterials, 11(4), 967. doi:10.3390/nano11040967.
[50] Beskopylny, A. N., Stel’makh, S. A., Shcherban’, E. M., Varavka, V., Meskhi, B., Mailyan, L. R., Kovtun, M., Kurlovich, S., El’shaeva, D., Chernil’nik, A., & Drogan, E. (2024). Performance and mechanism of the structure formation and physical-mechanical properties of concrete by modification with nanodiamonds. Construction and Building Materials, 452, 138994. doi:10.1016/j.conbuildmat.2024.138994.
[51] Gupta, N., Wang, Q., Wen, G., & Su, D. (2017). Nanodiamonds for catalytic reactions. Nanodiamonds, 439–463. doi:10.1016/B978-0-32-343029-6.00019-2.
[52] Tevyashev, A., & Shitikov, E. (2009). On the possibility of controlling the properties of cement concrete using nanomodifiers. Eastern-European Journal of Enterprise Technologies, 4(7), 35-40.
[53] Zhang, Y., Qin, Y., Guo, Z., & Li, D. (2023). Research on Performance Deterioration of Multi-Walled Carbon Nanotube–Lithium Slag Concrete under the Coupling Effect of Sulfate Attack and Dry–Wet Cycles. Materials, 16(14), 5130. doi:10.3390/ma16145130.
[54] Huang, J., Wang, Z., Li, G., & Yu, J. (2025). Synergistic effects of carbon nanotubes and polyvinyl alcohol on enhancing mechanical strength and carbonation resistance of concrete. Construction and Building Materials, 492, 143036. doi:10.1016/j.conbuildmat.2025.143036.
[55] Chousidis, N., & Zeris, C. (2025). Carbon nanotube reinforcement for cementitious Composites: Advancing thermal stability, mechanical strength and durability in fire-resistant concrete. Journal of Building Engineering, 111, 113587. doi:10.1016/j.jobe.2025.113587.
[56] Reis, E. D., Gatuingt, F., Poggiali, F. S. J., & Bezerra, A. C. S. (2025). Optimizing concrete performance: Influence of carbon nanotubes dispersion techniques. Procedia Structural Integrity, 67, 39–46. doi:10.1016/j.prostr.2025.06.006.
[57] Zhang, X., Luo, T., Zhong, X., Zhou, Y., Peng, X., & Zhao, C. (2025). High-performance foam concrete containing multi-wall carbon nanotubes and ssDNA. Construction and Building Materials, 458, 139523. doi:10.1016/j.conbuildmat.2024.139523.
[58] Zhao, Z., Hu, Y., Zhao, Z., Liu, Y., Xie, C., & Hu, Z. (2025). Effect of curing temperature on the hydration process of carbon nanotubes modified face slab concrete at the ultra-early age. Materials Letters, 394, 138633. doi:10.1016/j.matlet.2025.138633.
[59] Madenci, E., Özkılıç, Y. O., Bahrami, A., Hakeem, I. Y., Aksoylu, C., Asyraf, M. R. M., Beskopylny, A. N., Stel’makh, S. A., Shcherban’, E. M., & Fayed, S. (2023). Behavior of functionally graded carbon nanotube reinforced composite sandwich beams with pultruded GFRP core under bending effect. Frontiers in Materials, 10, 1236266. doi:10.3389/fmats.2023.1236266.
[60] GOST R 59715-2022. (2022). Self-compacting fresh concrete. Test Methods. Standartinform, Moscow, Russia. (In Russian).
[61] EN 12390-7:2019. (2019). Testing hardened concrete—Part 7: Density of Hardened Concrete. European Committee for Standardization (CEN), Brussels, Belgium.
[62] GOST R 58277-2018. (2018). Dry building mixes based on cement binder. Test methods. Standartinform, Moscow, Russia.
[63] GOST 12730.3-2020. (2022). Concretes. Method of determination of water absorption. Standartinform, Moscow, Russia.
[64] BS 1881-122:2011+A1:2020. (2020). Testing concrete - Method for determination of water absorption. British Standards Institution (BSI), London, United Kingdom.
[65] Nesvetaev, G. V., Koryanova, Y. I., & Shut, V. V. (2025). Autogenous Shrinkage of Concretes from Highly Mobile and Self-Compacting Mixtures. Modern Trends in Construction, Urban and Territorial Planning, 4(1), 41–53. doi:10.23947/2949-1835-2025-4-1-41-53.
[66] Beskopylny, A. N., Stel’makh, S. A., Shcherban’, E. M., Varavka, V., Meskhi, B., Mailyan, L. R., Kovtun, M., Kurlovich, S., El’shaeva, D., & Chernil’nik, A. (2024). Study of the Structure and Properties of Concrete Modified with Nanofibrils and Nanospheres. Buildings, 14(11), 3476. doi:10.3390/buildings14113476.
[67] Beskopylny, A. N., Shcherban’, E. M., Stel’makh, S. A., Mailyan, L. R., Meskhi, B., Evtushenko, A., Varavka, V., & Beskopylny, N. (2022). Nano-Modified Vibrocentrifuged Concrete with Granulated Blast Slag: The Relationship between Mechanical Properties and Micro-Structural Analysis. Materials, 15(12), 4254. doi:10.3390/ma15124254.
[68] Abouelnour, M. A., Fathy, I. N., Mahmoud, A. A., Alturki, M., Abdelaziz, M. M., Mostafa, S. A., Mahmoud, K. A., Dahish, H. A., Nabil, I. M., & Fattouh, M. S. (2025). Valorization of nano additives effects on the physical, mechanical and radiation shielding properties of high strength concrete. Scientific Reports, 15(1), 14440. doi:10.1038/s41598-025-99126-1.
[69] Srivastava, A., Mishra, A., & Singh, S. K. (2025). An effect of nano alumina and nano titanium di oxide with polypropylene fiber on the concrete: mechanical and durability study. Discover Civil Engineering, 2(1), 6. doi:10.1007/s44290-025-00161-8.
[70] Mokhtar, M. M. (2024). Evaluating the physico-mechanical performance of cement mortar reinforced with metakaolin/graphene oxide dual nano-additives. Innovative Infrastructure Solutions, 9(3), 75. doi:10.1007/s41062-024-01383-y.
[71] Chaturvedy, G. K., Pandey, U. K., & Mohan, G. (2025). Impact of nano-silica and multi-walled carbon nanotubes on the fire resistance performance of rubberized concrete. Journal of Building Pathology and Rehabilitation, 10(2), 161. doi:10.1007/s41024-025-00668-8.
[72] Das, D. K., & Tiwary, A. K. (2024). Influence of nano bentonite clay and nano fly ash on the mechanical and durability properties of concrete. Clean Technologies and Environmental Policy, 26(11), 3881–3894. doi:10.1007/S10098-023-02610-3.
[73] Yang, X., Yu, K., Li, K., Wang, Z., Ji, F., & Li, M. (2024). Research on mechanical properties of concrete by nano-TiC-BF-fly ash. Scientific Reports, 14(1), 4800. doi:10.1038/s41598-024-55553-0.
[74] Mousavi, S. S., Ahmadi, K., Dehestani, M., & Yeon, J. H. (2025). Influence of Coated Steel Fibers on Mechanical Properties of UHPC Considering Graphene Oxide, Nano-Aluminum Oxide, and Nano-Calcium Carbonate. Fibers, 13(4), 37. doi:10.3390/fib13040037.
[75] Amini Pishro, A., & Feng, X. (2018). Experimental Study on Bond Stress between Ultra High Performance Concrete and Steel Reinforcement. Civil Engineering Journal, 3(12), 1235–1246. doi:10.28991/cej-030953.
[76] Rahmawati, C., Aisyah, S., Sanusi, Iqbal, Maulana, M. M., Erdiwansyah, & Ahmad, J. (2024). Artificial Intelligence Models for Predicting the Compressive Strength of Geopolymer Cements. Civil Engineering Journal (Iran), 10, 37–50. doi:10.28991/CEJ-SP2024-010-03.
[77] Taher, Z. K., & Ismael, M. Q. (2023). Rutting Prediction of Hot Mix Asphalt Mixtures Modified by Nano Silica and Subjected to Aging Process. Civil Engineering Journal (Iran), 9, 1–14. doi:10.28991/CEJ-SP2023-09-01.
[78] Wen, Y., Wang, Z., Yuan, X., & Yang, X. (2025). Optimization of Mechanical Properties and Durability of Steel Fiber-Reinforced Concrete by Nano CaCO3 and Nano TiC to Improve Material Sustainability. Sustainability (Switzerland), 17(2), 641. doi:10.3390/su17020641.
[79] Cui, K., Lau, D., Zhang, Y., & Chang, J. (2021). Mechanical properties and mechanism of nano-CaCO3 enhanced sulphoaluminate cement-based reactive powder concrete. Construction and Building Materials, 309, 125099. doi:10.1016/j.conbuildmat.2021.125099.
[80] Lu, S., Zuo, T., Wang, Z., & Yan, S. (2025). Effects of CNTs/PVA on Concrete Performance: Strength, Drying Shrinkage, and Microstructure. Materials, 18(11), 2535. doi:10.3390/ma18112535.
[81] Martínez, J. D. R., Ríos, J. D., Cifuentes, H., & Leiva, C. (2025). Multi-Scale Toughening of UHPC: Synergistic Effects of Carbon Microfibers and Nanotubes. Fibers, 13(4), 49. doi:10.3390/fib13040049.
[82] Cea, E. J. C., Omisol, C. J. M., Tuble, K. A. Q., Bongabong, A. G., Aguinid, B. J. M., Asequia, D. M. A., Erjeno, D. J. D., Ahalajal, M. A. N., Maravillas, F. P., Cavero, A. I., Dumancas, G. G., Malaluan, R. M., & Lubguban, A. A. (2025). Combined Effect of Multi-Walled Carbon Nanotubes and Silica Fume on Mechanical, Physicochemical, and Thermal Properties of Concrete Composites. Buildings, 15(7), 1087. doi:10.3390/buildings15071087.
[83] Choi, S. J., Lee, J. I., Kim, C. Y., Yoon, J. H., & Kim, K. H. (2024). Effect of Amorphous Metallic Fibers on Thermal and Mechanical Properties of Lightweight Aggregate Cement Mortars Containing Carbon Nanotubes. Materials, 17(22), 5449. doi:10.3390/ma17225449.
[84] Rafieizonooz, M., Kim, J. H. J., Kim, J. S., & Jo, J. Bin. (2024). Effect of Carbon Nanotubes on Chloride Diffusion, Strength, and Microstructure of Ultra-High Performance Concrete. Materials, 17(12), 2851. doi:10.3390/ma17122851.
[85] Kostrzanowska-Siedlarz, A., Musioł, K., Ponikiewski, T., Janas, D., & Kampik, M. (2024). Facile Incorporation of Carbon Nanotubes into the Concrete Matrix Using Lignosulfonate Surfactants. Materials, 17(20), 4972. doi:10.3390/ma17204972.
[86] Lee, D., Lee, S. C., Kwon, O. S., & Yoo, S. W. (2024). Shear Behavior of High-Strength and Lightweight Cementitious Composites Containing Hollow Glass Microspheres and Carbon Nanotubes. Buildings, 14(9), 2824. doi:10.3390/buildings14092824.
[87] Shi, C., Jin, S., Wang, C., & Yang, Y. (2024). Enhancing Flexural Behavior of Reinforced Concrete Beams Strengthened with Basalt Fiber-Reinforced Polymer Sheets Using Carbon Nanotube-Modified Epoxy. Materials, 17(13), 3250. doi:10.3390/ma17133250.
[88] Wu, H., Liu, X., Ma, X., & Liu, G. (2024). Effects of Multi-Walled Carbon Nanotubes and Recycled Fine Aggregates on the Multi-Generational Cycle Properties of Reactive Powder Concrete. Sustainability (Switzerland), 16(5), 2084. doi:10.3390/su16052084.
[89] Antolín-Rodríguez, A., Juan-Valdés, A., Guerra-Romero, M. I., Morán-del Pozo, J. M., Krzywon, R., Maravelaki, P. N., & García-González, J. (2025). Mechanical Performance of Concrete with Graphene-Oxide-Treated Recycled Coarse Ceramic Aggregates: Effects on Aggregate Water Absorption and Workability. Ceramics, 8(3), 104. doi:10.3390/ceramics8030104.
[90] Ginigaddara, T., Devapura, P., Vimonsatit, V., Booy, M., Mendis, P., & Satsangi, R. (2025). A Comprehensive Study of the Macro-Scale Performance of Graphene Oxide Enhanced Low Carbon Concrete. Construction Materials, 5(3), 47. doi:10.3390/constrmater5030047.
[91] Benavente, C., Romero, A., Napa, J., Sanabria, A., Landivar, Y., La Borda, L., Pezo, P., Muñiz, A., & Muñiz, M. (2025). The Influence of Graphene Oxide on the Performance of Concrete: A Quantitative Analysis of Mechanical and Microstructural Properties. Buildings, 15(7), 1082. doi:10.3390/buildings15071082.
[92] He, T., Xie, W., Wang, F., Yu, Z., Xu, F., Li, J., Deng, Y., Ding, Q., Hao, Y., Xu, W., & Yu, H. (2024). A Study on the Mechanism by Which Graphene Oxide Affects the Macroscopic Properties and Microstructure of Abrasion-Resistant Ultra-High-Performance Concrete (UHPC). Coatings, 14(12), 1482. doi:10.3390/coatings14121482.
[93] Li, Y., & Zhang, H. (2025). Enhancing adhesion behaviour of steel and CFRP rebars in Al₂O₃ nanoparticle-reinforced concrete: insights from experimental and finite element analyses. Australian Journal of Structural Engineering, 1–14. doi:10.1080/13287982.2025.2520041.
[94] Muñoz, J. F., Yao, Y., Youtcheff, J., & Arnold, T. (2014). Mixtures of silicon and aluminum oxides to optimize the performance of nanoporous thin films in concrete. Cement and Concrete Composites, 48, 140–149. doi:10.1016/j.cemconcomp.2013.11.013.
[95] Joshaghani, A., Balapour, M., Mashhadian, M., & Ozbakkaloglu, T. (2020). Effects of nano-TiO2, nano-Al2O3, and nano-Fe2O3 on rheology, mechanical and durability properties of self-consolidating concrete (SCC): An experimental study. Construction and Building Materials, 245, 118444. doi:10.1016/j.conbuildmat.2020.118444.
[96] Shcherban, E. M., Stel’makh, S. A., Mailyan, L. R., Beskopylny, A. N., Smolyanichenko, A. S., Chernil’nik, A. A., Elshaeva, D. M., & Beskopylny, N. A. (2024). Structure and Properties of Variatropic Concrete Combined Modified with Nano-and Micro-silica. Construction Materials and Products, 7(2), 3. doi:10.58224/2618-7183-2024-7-2-3.
[97] Turina, V. S., Chepurnenko, A. S., & Akopyan, V. F. (2024). Methodology for determining true temperature stresses during the construction of massive monolithic reinforced concrete structures. Construction Materials and Products, 7(3), 5. doi:10.58224/2618-7183-2024-7-3-5.
[98] Xavier, V. H. C., Salles, A. M. da S. L. de M., Meneghetti, E. M., Maeda, G. H. H., Sousa, A. M. D. de, Félix, E. F., & Prado, L. P. (2025). Experimental and Numerical Analyses on the Flexural Tensile Strength of Ultra-High-Performance Concrete Prisms with and Without Rice Husk Ash. Buildings, 15(10), 1635. doi:10.3390/buildings15101635.
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.![]()








