Performance Evaluation of Semi-Precast Reinforced Concrete Slabs Under Flexural Load
Downloads
This study aims to evaluate the flexural performance of semi-precast reinforced concrete slabs incorporating steel lattice girders as internal reinforcement. The objective is to investigate the influence of geometric and material parameters such as precast slab thickness, lattice girder height, top chord diameter, concrete compressive strength, and the addition of steel or glass fibers on overall flexural capacity and deformation behavior. Thus, previous studies have shown that replacing conventional cast-in-situ slabs with semi-precast systems can reduce total construction costs by 43–70%. Thirteen semi-precast slabs and one control slab were tested under four-point bending, and a nonlinear finite element model was developed in ABAQUS to simulate the experimental response. The analysis focused on load–deflection behavior, strain distribution, and failure modes. Results indicated that increasing slab thickness and chord diameter enhanced stiffness and load-bearing capacity, while higher concrete strength and fiber reinforcement improved crack control and reduced deflection. The FEM model demonstrated strong agreement with experimental results, validating its reliability for predicting structural performance. This study extends previous research by integrating a broad experimental parameter range with a validated ABAQUS finite element model, providing new insights into the structural optimization and cost efficiency of semi-precast slab systems. The proposed semi-precast system exhibited ductile behavior and achieved savings in formwork and labor cost compared with conventional flat slabs, offering a practical and sustainable alternative for efficient concrete construction.
Downloads
[1] Abdul Kadir, M. R., Lee, W. P., Jaafar, M. S., Sapuan, S. M., & Ali, A. A. A. (2006). Construction performance comparison between conventional and industrialised building systems in Malaysia. Structural Survey, 24(5), 412–424. doi:10.1108/02630800610712004.
[2] Akmam Syed Zakaria, S., Gajendran, T., Rose, T., & Brewer, G. (2017). Contextual, structural and behavioural factors influencing the adoption of industrialised building systems: a review. Architectural Engineering and Design Management, 14(1–2), 3–26. doi:10.1080/17452007.2017.1291410.
[3] Giussani, F. B. E., & Mola, F. (2006). Precast and Cast in Situ Slab Systems for Residential Buildings. Proceedings of the 31st Conference on Our World in Concrete and Structure16-17 August, 2006, Singapore.
[4] Rasidi, N., Soehardjono, A. M. D., & Zacoeb, A. (2013). Crack width prediction in precast deck slab concrete structure. International Journal of Engineering and Technology, 3(1), 21-27.
[5] Shen, L., Tam, V. W., & Li, C. (2009). Benefit analysis on replacing in situ concreting with precast slabs for temporary construction works in pursuing sustainable construction practice. Resources, Conservation and Recycling, 53(3), 145–148. doi:10.1016/j.resconrec.2008.11.001.
[6] Pessiki, S., Prior, R., Sause, R., & Slaughter, S. (1995). Review of existing precast concrete gravity load floor framing systems. PCI Journal, 40(2), 52–68. doi:10.15554/pcij.03011995.52.68.
[7] Newell, S., & Goggins, J. (2019). Experimental study of hybrid precast concrete lattice girder floor at construction stage. Structures, 20, 866–885. doi:10.1016/j.istruc.2019.06.022.
[8] Zhang, X., Li, H., Liang, S., & Zhang, H. (2021). Experimental and numerical study of lattice girder composite slabs with monolithic joint. Crystals, 11(2), 219. doi:10.3390/cryst11020219.
[9] Hillebrand, M., Sinning, A., & Hegger, J. (2024). Shear and interface shear fatigue of semi-precast slabs with lattice girders under cyclic loading. Structural Concrete, 25(6), 4895–4917. doi:10.1002/suco.202400219.
[10] Löfgren, I. (2003). Lattice Girder Elements-Investigation of Structural Behaviour and Performance Enhancements. Nordic Concrete Research, 29(29), 85–104.
[11] Xu, Q., Chen, L., Li, X., Han, C., Wang, Y. C., & Zhang, Y. (2020). Comparative experimental study of fire resistance of two-way restrained and unrestrained precast concrete composite slabs. Fire Safety Journal, 118, 103225. doi:10.1016/j.firesaf.2020.103225.
[12] Lam, S. S. E., Wong, V., & Lee, R. S. M. (2019). Bonding assessment of semi-precast slabs subjected to flexural load and differential shrinkage. Engineering Structures, 187, 25–33. doi:10.1016/j.engstruct.2019.02.029.
[13] Mohamed, M. S., Thamboo, J. A., & Jeyakaran, T. (2020). Experimental and numerical assessment of the flexural behaviour of semi-precast-reinforced concrete slabs. Advances in Structural Engineering, 23(9), 1865–1879. doi:10.1177/1369433220904011.
[14] Baran, E. (2015). Effects of cast-in-place concrete topping on flexural response of precast concrete hollow-core slabs. Engineering Structures, 98, 109–117. doi:10.1016/j.engstruct.2015.04.017.
[15] Adawi, A., Youssef, M. A., & Meshaly, M. E. (2016). Finite element modeling of the composite action between hollowcore slabs and the topping concrete. Engineering Structures, 124, 302–315. doi:10.1016/j.engstruct.2016.06.016.
[16] Hillebrand, M., Schmidt, M., Wieneke, K., Classen, M., & Hegger, J. (2021). Investigations on interface shear fatigue of semi-precast slabs with lattice girders. Applied Sciences, 11(23), 11196. doi:10.3390/app112311196.
[17] Mahmoud, M. R. I., Wang, X., Xingyu, B., Altayeb, M., Liu, S., & Moussa, A. M. A. (2024). Flexural behaviour of semi-precast slabs of fibre-reinforced concrete reinforced with prestressed basalt fibre-reinforced polymer and steel bars. Advances in Structural Engineering, 27(15), 2609–2625. doi:10.1177/13694332241276059.
[18] Rahimi Mansour, F., Abu Bakar, S., Ibrahim, I. S., Marsono, A. K., & Marabi, B. (2015). Flexural performance of a precast concrete slab with steel fiber concrete topping. Construction and Building Materials, 75, 112–120. doi:10.1016/j.conbuildmat.2014.09.112.
[19] Song, L. T., Duan, S. J., Hou, J., Tong, J. Z., Li, Q. H., & Xu, S. L. (2025). Flexural performance evaluation on precast UHTCC-concrete composite slabs. Structures, 81(110284). doi:10.1016/j.istruc.2025.110284.
[20] Putra, B. G. D., Dewi, S. M., & Wisnumurti, W. (2025). Flexural Performance of a Semi-Precast Two-Way Slab with AAC Infill and Hybrid Bamboo–Steel Reinforcement under Point Loading. Rekayasa Sipil, 19(3), 283–289. doi:10.21776/ub.rekayasasipil.2025.019.03.3.
[21] Hernández-Pérez, J., Pascual-Francisco, J., López-González, A., Jiménez-Montoya, A., & Susarrey-Huerta, O. (2025). Flexural Behavior of Concrete Slabs Reinforced with Embedded 3D Steel Trusses. Buildings, 15(13), 2144. doi:10.3390/buildings15132144.
[22] Mahmoud, M. R. I., Wang, X., Altayeb, M., Al-Shami, H. A. M., Ali, Y. M. S., & Moussa, A. M. A. (2024). Experimental and numerical study of the flexural behaviour of semi-precast slab reinforced with prestressed FRP bars. Structures, 62. doi:10.1016/j.istruc.2024.106197.
[23] Mahmoud, M. R., Wang, X., Xingyu, B., Altayeb, M., Liu, S., & Moussa, A. M. (2024). Flexural behaviour of semi-precast slabs of fibre-reinforced concrete reinforced with prestressed basalt fibre-reinforced polymer and steel bars. Advances in Structural Engineering, 27(15), 2609–2625. doi:10.1177/13694332241276059.
[24] Newell, S., Goggins, J., & Hajdukiewicz, M. (2016). Real-time monitoring to investigate structural performance of hybrid precast concrete educational buildings. Journal of Structural Integrity and Maintenance, 1(4), 147–155. doi:10.1080/24705314.2016.1240525.
[25] Zhang, M., Feng, W., Chen, K., & Li, B. (2024). Flexural Behavior of a New Precast Insulation Mortar Sandwich Panel. Applied Sciences, 14(5), 2071. doi:10.3390/app14052071.
[26] Yun, Y., Jiang, J., & Chen, P. (2022). Flexural behavior of lattice girder slabs with different connections: experimental study. Advances in Civil Engineering, 2022(1), 7722668. doi:10.1155/2022/7722668.
[27] ASTM C33/C33M-24a. (2024). Standard Specification for Concrete Aggregates. ASTM International, Pennsylvania, United States. doi:10.1520/C0033_C0033M-24A.
[28] ES 4756-1. (2013). Cement - Part 1: Composition, specifications and conformity criteria for common cements. Egyptian Standards, Cairo, Egypt. (In Arabic).
[29] EN 197-1. (2004). Composition, specifications, and conformity criteria for common cements. European Committee for Standardization, Brussels, Belgium.
[30] ASTM C1240-20. (). Standard Specification for Silica Fume Used in Cementitious Mixtures. ASTM International, Pennsylvania, United States. doi:0.1520/C1240-20.
[31] ACI 211.1-91. (2002). Standard Practice for Selecting Proportions for Normal, Heavyweight, and Mass Concrete. American Concrete Institute (ACI), Farmington Hills, United States.
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.![]()








