Assessment of Sulfur Dioxide Levels in Atmospheric Air Over the Period 2019–2024
Downloads
This study investigates the spatiotemporal distribution and dynamics of atmospheric sulfur dioxide (SO₂) over the Crimean Peninsula during the period 2019–2024, employing protected natural areas as background reference sites for air quality assessment. The primary objective is to determine the variability in SO₂ concentrations in the atmosphere over Crimea. Methodologically, the study involves selecting background sites across diverse landscape levels throughout the peninsula, and applying Z-analysis to categorize ambient air pollution into four levels: conditionally low, average, elevated, and high. The analysis encompasses annual mean SO₂ levels, assessment of temporal trends, and localization of pollution hotspots. Results indicate a peak in SO₂ levels in 2020, predominantly at mid-mountain landscape level, and a minimum in 2019. Overall, a decreasing trend of 25.4 µmol/m² per year in SO₂ concentrations is observed, despite localized zones of high pollution, including areas northeast of the regional center, Simferopol. In 2022, the low-mountain landscape level of the northern macroslope exhibited the most extensive conditionally high pollution zone, covering nearly half of its territory. The novelty of this work lies in integrating protected natural areas as reference sites within the Z-analysis framework, enabling more precise identification of anthropogenic influences and the spatial distribution patterns of sulfur dioxide concentrations in the region’s atmosphere.
Downloads
[1] CHAMEO Chemicals. (2025). Chemical Datasheet: Sulfur dioxide. CHAMEO Chemicals, Silver Spring, United States. Available online: https://cameochemicals.noaa.gov/chemical/1554 (accessed on October 2025).
[2] Mellor, J. W. (1922). A Comprehensive Treatise on Inorganic and Theoretical Chemistry. Archives of Radiology and Electrotherapy, 27(5), 159–159. doi:10.1259/are.1922.0042.
[3] E.P.A. (2025). Sulfur Dioxide Basics. United States Environmental Protection Agency, Washington, United States. Available online: https://www.epa.gov/so2-pollution/sulfur-dioxide-basics (accessed on October 2025).
[4] Institute for Global Sustainability. (2025). Global anthropogenic sulfur dioxide emissions, 1750-2022. Institute for Global Sustainability, Boston University, Boston, United States. Available online: https://visualizingenergy.org/global-anthropogenic-sulfur-dioxide-emissions-1750-2022/ (accessed on October 2025).
[5] Chen, Y., A, R. J. Van Der, Ding, J., Eskes, H., Cifuentes, F., & Pieternel, F. (2025). High resolution quantification of SO2 emissions over India based on TROPOMI observations. EGUsphere, 2025, 1-17. doi:10.5194/egusphere-2025-4490.
[6] Chen, Y., Van Der A, R. J., Ding, J., Eskes, H., Williams, J. E., Theys, N., Tsikerdekis, A., & Levelt, P. F. (2025). SO2 emissions derived from TROPOMI observations over India using a flux-divergence method with variable lifetimes. Atmospheric Chemistry and Physics, 25(3), 1851–1868. doi:10.5194/acp-25-1851-2025.
[7] Hamzeh, N. H., Kaskaoutis, D. G., Abadi, A. R. S., Vuillaume, J. F., & Shukurov, K. A. (2025). Air Quality Assessment in Iran During 2016–2021: A Multi-Pollutant Analysis of PM2.5, PM10, NO2, SO2, CO, and Ozone. Applied Sciences (Switzerland), 15(18), 9925. doi:10.3390/app15189925.
[8] Fernández Maldonado, V. N., Navas, A. L., Mazza, G., Fabani, P., & Rodriguez, R. (2025). Towards Sustainable Hydrocarbon Extraction: A Study of Atmospheric Pollutant Dynamics (CO, CH4, SO2, HCHO) via Remote Sensing and Meteorological Data. Sustainability (Switzerland), 17(18), 8443. doi:10.3390/su17188443.
[9] Siu, T. K., Greene, C. S., & Fong, K. C. (2025). Identifying surface sulphur dioxide (SO2) monitoring gaps in Saint John, Canada with land use regression and hot spot mapping. Atmospheric Environment, 353, 121238. doi:10.1016/j.atmosenv.2025.121238.
[10] Tatsumi, K., & Diep, N. T. H. (2025). Validation of Anthropogenic Emission Inventories in Japan: A WRF-Chem Comparison of PM2.5, SO2, NOx and CO Against Observations. Data, 10(9), 151. doi:10.3390/data10090151.
[11] Schiavo, B., Stremme, W., Meza, J. V., Rangel-Rodríguez, R., Carbajal-Aguilar, C. C., & Ortega-Flores, P. A. (2025). Monitoring and Dispersion of SO2 Emissions from Power Plants Using UV Camera and AERMOD: A Case Study of Baja California Sur, Mexico. Atmosphere, 16(10), 1128. doi:10.3390/atmos16101128.
[12] Xing, C., Wei, S., Li, Y., Jiao, P., Liu, C., Chen, J., Wang, W., Peng, H., Song, Y., & Liu, C. (2025). Fast-hyperspectral imaging remote sensing: Emission quantification of NO2 and SO2 from marine vessels. Light: Science & Applications, 14(1), 1–11. doi:10.1038/s41377-025-01922-x.
[13] Ramadhanni, R. F., & Jaelani, L. M. (2025). Multitemporal Analysis of SO2 Concentrations Above Semeru Based on Sentinel-5P Satellite Imagery Data with the Google Earth Engine Platform. Jurnal Penginderaan Jauh Indonesia, 4(2), 57–66. doi:10.12962/jpji.v4i2.6286.
[14] Pratama, F., & Jaelani, L. M. (2025). Analysis of SO2 Emissions and Thermal Anomalies from the Eruption of Mount Lewotobi Laki-laki in November 2024 Using Google Earth Engine. Jurnal Penginderaan Jauh Dan Pengolahan Data Citra Digital, 19(1), 32–45. doi:10.12962/inderaja.v19i1.5968.
[15] Uranishi, K., Shimadera, H., Nogami, A., & Sugata, S. (2025). Modeling study of the impact of SO 2 volcanic emissions on PM 2.5 pollution in the summer of 2020 in the Kyushu region of Japan. E3S Web of Conferences, 629, 01001. doi:10.1051/e3sconf/202562901001.
[16] Esse, B., Burton, M., Brenot, H., & Theys, N. (2025). Insights into eruption dynamics from TROPOMI/PlumeTraj-derived SO2 emissions during the 2022 eruption of Mauna Loa, Hawaiʻi. Bulletin of Volcanology, 87(9). doi:10.1007/s00445-025-01839-8.
[17] Mota, R., Filizzola, C., Falconieri, A., Marchese, F., Pergola, N., Tramutoli, V., Gil, A., & Pacheco, J. (2025). Robust Satellite Techniques (RSTs) for SO2 Detection with MSG-SEVIRI Data: A Case Study of the 2021 Tajogaite Eruption. Remote Sensing, 17(19), 3345. doi:10.3390/rs17193345.
[18] Ward, P. L. (2009). Sulfur dioxide initiates global climate change in four ways. Thin Solid Films, 517(11), 3188–3203. doi:10.1016/j.tsf.2009.01.005.
[19] TROPOS. (2025). Biogenes Aerosol: TROPOS Department Chemistry of Atmosphere. Leibniz Institute for Tropospheric Research, Leipzig, Germany. Available online: https://www.tropos.de/en/institute/departments/modeling-of-atmospheric-processes/biogenes-aerosol (accessed on October 2025).
[20] Forster, P., Storelvmo, T., Armour, K., Collins, W., Dufresne, J.-L., Frame, D., Lunt, D. J., Mauritsen, T., Palmer, M. D., Watanabe, M., Wild, M., & Zhang, H. (2021). The Earth’s Energy Budget, Climate Feedbacks, and Climate Sensitivity. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom. doi:10.1017/9781009157896.009.
[21] Copernicus. (2025). Climate Change Service: Monthly Climate Bulletin. Warmest January on record, 12-month average over 1.5°C above preindustrial. Copernicus. Available online: https://climate.copernicus.eu/warmest-january-record-12-month-average-over-15degc-above-preindustrial (accessed on October 2025).
[22] MIT Climate Portal. (2025). How much global warming has been hidden by the cooling effect from sulfur produced by burning coal and oil? MIT Climate Portal, Cambridge, United States. Available online: https://climate.mit.edu/ask-mit/how-much-global-warming-has-been-hidden-cooling-effect-sulfur-produced-burning-coal-and-oil (accessed on October 2025).
[23] Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen , Y., Goldfarb, L., Gomis , M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekçi, O., Yu, R., & Zhou, B. (2021). IPCC. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press; United Kingdom. doi:10.1017/9781009157896.
[24] Pitt, N. (2025). Investigating sulphur dioxide's impact on global temperature. University of Cambridge, Cambridge, United Kingdom. Available online: https://www.ch.cam.ac.uk/news/investigating-sulphur-dioxides-impact-global-temperature (accessed on October 2025).
[25] Nederlandse V. (1980). Handling chemicals safely. Dutch Association of Safety Experts, Dutch Chemical Industry Association, Dutch Safety Institute. Arnhem, Netherlands.
[26] N.P.S. (2025). Nitrogen and Sulfur Pollution in Parks. National Park Service, Washington, United States. Available online: https://www.nps.gov/subjects/air/nature-nitrogensulfur.htm (accessed on October 2025).
[27] NASA Science Editorial Team. (2025). Aerosols: Small Particles with Big Climate Effects. National Aeronautics and Space Administration (NASA), Washington, United States. Available online: https://science.nasa.gov/science-research/earth-science/climate-science/aerosols-small-particles-with-big-climate-effects/ (accessed on October 2025).
[28] Health Effects Institute. (2024). State of Global Air 2024. Special Report. Health Effects Institute, Boston, United States.
[29] American Lung Association. (2025). Sulfur dioxide. American Lung Association, American Lung Association, United States. Available online: https://www.lung.org/clean-air/outdoors/what-makes-air-unhealthy/sulfur-dioxide (accessed on July 2025).
[30] U.S. Environmental Protection Agency. (1998). Guidelines for Ecological Risk Assessment. (1998). U.S. Environmental Protection Agency, Washington, United States.
[31] N.P.S. (2025). Sulfur Dioxide Effects on Health. National Park Service, Washington, United States. Available online: https://www.nps.gov/subjects/air/humanhealth-sulfur.htm (accessed on October 2025).
[32] Quaas, J., Jia, H., Smith, C., Albright, A. L., Aas, W., Bellouin, N., Boucher, O., Doutriaux-Boucher, M., Forster, P. M., Grosvenor, D., Jenkins, S., Klimont, Z., Loeb, N. G., Ma, X., Naik, V., Paulot, F., Stier, P., Wild, M., Myhre, G., & Schulz, M. (2022). Robust evidence for reversal of the trend in aerosol effective climate forcing. Atmospheric Chemistry and Physics, 22(18), 12221–12239. doi:10.5194/acp-22-12221-2022.
[33] Watson-Parris, D., Christensen, M. W., Laurenson, A., Clewley, D., Gryspeerdt, E., & Stier, P. (2022). Shipping regulations lead to large reduction in cloud perturbations. Proceedings of the National Academy of Sciences, 119(41). doi:10.1073/pnas.2206885119.
[34] Jiang, R., & Zhao, L. (2022). Effects of IMO sulphur limits on the international shipping company’s operations: From a game theory perspective. Computers & Industrial Engineering, 173, 108707. doi:10.1016/j.cie.2022.108707.
[35] Coulibaly, T. S., Diarra, C., Sanogo, S., & Traore, I. (2025). Analysis of the Climatic Impacts of SO2 Injection into the Stratosphere on Precipitation Indices in the Sahel. Journal of Atmospheric Science Research, 8(1), 27–40. doi:10.30564/jasr.v8i1.8603.
[36] Earth Engine Data Catalog. (2025). Sentinel-5P OFFL SO2: Offline Sulfur Dioxide. Earth Engine Data Catalog, Mountain View, United States. Available online: https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S5P_OFFL_L3_SO2 (accessed on October 2025).
[37] Earth Engine Data Catalog. (2025). Sentinel-5P. Earth Engine Data Catalog, Mountain View, United States. Available online: https://developers.google.com/earth-engine/datasets/catalog/sentinel-5p (accessed on October 2025).
[38] Google Earth Engine. (2025). A planetary-scale platform for Earth science data & analysis. Google Earth Engine, Mountain View, United States. Available online: https://earthengine.google.com (accessed on October 2025).
[39] Tabunschik, V., Gorbunov, R., & Gorbunova, T. (2023). Unveiling Air Pollution in Crimean Mountain Rivers: Analysis of Sentinel-5 Satellite Images Using Google Earth Engine (GEE). Remote Sensing, 15(13), 3364. doi:10.3390/rs15133364.
[40] Tabunschik, V., Gorbunov, R., Bratanov, N., Gorbunova, T., Mirzoeva, N., & Voytsekhovskaya, V. (2023). Fatala River Basin (Republic of Guinea, Africa): Analysis of Current State, Air Pollution, and Anthropogenic Impact Using Geoinformatics Methods and Remote Sensing Data. Sustainability (Switzerland), 15(22), 15798. doi:10.3390/su152215798.
[41] Pozachenyuk, E. (2009). Modern landscapes of Crimea and adjacent water areas. Business-Inform, Simferopol, Ukraine. (In Russian).
[42] Drygval, A. V., Drygval, P. V., & Tabunschik, V. A. (2024). Assessment of nitrogen dioxide (NO2) content in the atmosphere over the Crimean Peninsula in the period 2019-2023. Scientific Notes of V.I. Vernadsky Crimean Federal University. Geography. Geology, 10(76), 53–67. (In Russian).
[43] Kashirina, E. S., Medvedkov A. A., Novikov A. A. (2022). Assessment of the State of Near-Surface Atmospheric Air in Southwestern Crimea Based on Lichen Indication Data. Proceedings of Tomsk Polytechnic University. Geo-Resources Engineering, 333 (8), 126-138. (In Russian).
[44] Yachmioneva, N.V., Gol’vey, A.Yu. (2011). Frequency of Inversions and Their Influence on Atmospheric Air Pollution Levels in Chelyabinsk. Bulletin of Chelyabinsk State University. Series: Ecology. Natural Resources Use, 5 (220), 84-89. (In Russian).
[45] In Crimea, efforts are underway to reduce the emissions of harmful substances into the atmosphere. Available online: https://xn----ttbgfagjn8f.xn--p1ai/novosti/v-krymu-vedetsja-rabota-po-snizheniju-vybrosov-vrednyh-veshhestv-v-vozduh/ (accessed on October 2025). (In Russian).
[46] Zvyagintsev, A. M., Blum, O. B., Glazkova, A. A., Kotel’nikov, S. N., Kuznetsova, I. N., Lapchenko, V. A., ... & Shalygina, I. Y. (2011). Anomalies of trace gases in the air of the European part of Russia and Ukraine in summer 2010. Atmospheric and Oceanic Optics, 24(6), 536-542. doi:10.1134/S1024856011060145.
[47] Tabunshchik, V., Nikiforova, A., Lineva, N., Drygval, P., Gorbunov, R., Gorbunova, T., Kerimov, I., Pham, C. N., Bratanov, N., & Kiseleva, M. (2024). The Dynamics of Air Pollution in the Southwestern Part of the Caspian Sea Basin (Based on the Analysis of Sentinel-5 Satellite Data Utilizing the Google Earth Engine Cloud-Computing Platform). Atmosphere, 15(11), 1371. doi:10.3390/atmos15111371.
[48] Rana, F., Siddiqui, S., & ul-Haq, Z. (2023). Investigating the Spatiotemporal Distributions of NO2, SO2 and Their Association with NDVI in Lahore (Pakistan) and Its Adjoining Region of Punjab (India). Journal of the Indian Society of Remote Sensing, 51(8), 1683–1696. doi:10.1007/s12524-023-01726-9.
[49] Ghannadi, M. A., Shahri, M., Alebooyeh, S., & ... (2021). Evaluation of sulfur dioxide emissions in thermal power plant and its effect on air quality in the neighboring city using Sentinel-5 images (Case Study: Iran, Arak). Earth Observation and Geomatics Engineering, 5(1), 36–45. doi:10.22059/eoge.2022.332834.1106.
[50] Jodhani, K. H., Gupta, N., Parmar, A. D., Bhavsar, J. D., Patel, D., Singh, S. K., Mishra, U., Omar, P. J., & Omar, G. J. (2024). Unveiling Seasonal Fluctuations in Air Quality Using Google Earth Engine: A Case Study for Gujarat, India. Topics in Catalysis, 67(15–16), 961–982. doi:10.1007/s11244-024-01957-1.
[51] Anwer, H. A., Hassan, A., & Elhag, A. (2025). A five-year Study Using Sentinel-5P Data Observing Seasonal Dynamics and Long-term Trends of Atmospheric Pollutants. International Journal of Engineering and Geosciences, 10(2), 262–271. doi:10.26833/ijeg.1587122.
[52] Wieczorek, B. (2023). Air Pollution Patterns Mapping of SO2, NO2, and CO Derived from TROPOMI over Central-East Europe. Remote Sensing, 15(6), 1565. doi:10.3390/rs15061565.
[53] Yanti, J., Tampubolon, T., Liu, C.-Y., Alonge, T. A., Qaiyimah, D., Abidin, M. R., Mannan, A., & Saputra, R. R. (2024). Measuring The Spatio-Temporal Distribution of Sulfur Dioxide (SO2) with Copernicus Sentinel-5P Near Real Time in Medan City. Jurnal Geografi, 16(1), 101–110. doi:10.24114/jg.v16i1.55297.
[54] Kafia, F., Yousefia, E., Ehteramc, M., & Ashrafid, K. (2024). Monitoring air pollution using Sentinel-5 satellite imagery: A case study of Razavi. Sustainable Earth Trends Journal, 4(4), 41–55. doi:10.48308/set.2024.236905.1067.
[55] Enuneku, A., Anani, O. A., Amaechi, C. F., Goodluck, O. M., & Nwulu, F. L. (2024). Monitoring of SO2 and NO2 Levels around a Gas Flow Station in the Sub-Saharan Region Using Sentinel 5P Satellite Data. Journal of the Indian Society of Remote Sensing, 52(11), 2375–2388. doi:10.1007/s12524-024-01946-7.
[56] Turakhia, T., Bukhari, R., Chovatiya, A., Kureshi, A., Singh, P., Vyas, J., Iyer, R., Shah, T., Shah, D., & Pandya, M. (2024). Identification of Sulfur Dioxide (SO2) Hotspots of Gujarat state using Sentinel 5P-TROPOMI. Journal of Geomatics, 18(2), 117–122. doi:10.58825/jog.2024.18.2.169.
[57] Chaturvedi, S., & Tak, K. (2025). Geospatial Assessment of Air Quality Dynamics in Ajmer, India Using Sentinel-5P Data and Google Earth Engine. Proceedings of the 9th International Conference on Civil Engineering. ICOCE 2025. Lecture Notes in Civil Engineering, vol 714, Springer, Singapore. doi:10.1007/978-981-96-8990-3_37.
[58] Kazemi Garajeh, M., Laneve, G., Rezaei, H., Sadeghnejad, M., Mohamadzadeh, N., & Salmani, B. (2023). Monitoring Trends of CO, NO2, SO2, and O3 Pollutants Using Time-Series Sentinel-5 Images Based on Google Earth Engine. Pollutants, 3(2), 255–279. doi:10.3390/pollutants3020019.
[59] Gusev, A. P., & Flerko, T. G. (2024). Spatial and seasonal variability of NO2, SO2, and CO concentrations over Belarus. Regional Geosystems, 48(2), 210–220. doi:10.52575/2712-7443-2024-48-2-210-220. (In Russian).
[60] Corradino, C., Jouve, P., La Spina, A., & Del Negro, C. (2024). Monitoring Earth’s atmosphere with Sentinel-5 TROPOMI and Artificial Intelligence: Quantifying volcanic SO2 emissions. Remote Sensing of Environment, 315, 114463. doi:10.1016/j.rse.2024.114463.
[61] Muslimbekov, B., Teshaev, N., Abdurakhmonov, S., & Gaybulloev, O. (2024). Monitoring Trends of SO2 level Using Time-Series Sentinel-5 Images Based on Google Earth Engine. E3S Web of Conferences, 563, 3068. doi:10.1051/e3sconf/202456303068.
[62] Fiantis, D., Zulhakim, H., Yulanda, N., Ginting, F. I., Gusnidar, & Yasin, S. (2024). Tracing sulphur dioxide in volcanic deposits and ash emission during the 2019 Sinabung eruptions. IOP Conference Series: Earth and Environmental Science, 1306(1), 12020. doi:10.1088/1755-1315/1306/1/012020.
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.![]()















