A Model for the Reduction of Flood Peak Discharge (ΔQp) Due to the Retarding Basin
Downloads
This research aims to develop a model for flood peak discharge reduction (ΔQp) through the placement of retarding basins within a watershed system, represented by the area ratio of the controlled watershed (RAk) and the maximum storage capacity of the retarding basin (Vk). The area ratio of the controlled watershed (RAk) is defined as the ratio between the catchment area of the retarding basin and the total watershed area (Ak/A). The methodology involves simulating various retarding basin placements (RAk) and different maximum storage capacities (Vk) for several flood return periods (QT). This study was conducted in the urban agglomeration area of Wonosari, Gunungkidul Regency, Special Region of Yogyakarta, Indonesia. The placement and utilization of retarding basins result in varying levels of flood peak discharge reduction (ΔQp) at the downstream control point (Taman Pancuran), depending on the maximum storage capacity of the retarding basin (Vk) and its placement within the watershed (RAk). The resulting empirical equations for flood peak discharge reduction (ΔQp) using the retarding basin method are as follows: ΔQp = 0.105654 − 0.014593 Vk − 0.029251 RAk + 0.011089 QT for Vk values in the range (V1–V4) = 36.4–208.8 × 10³ m³, and ΔQp = 1.374989 − 0.003702 Vk − 0.338381 RAk + 0.004773 QT for Vk values in the range (V4–V200) = 136.2–7039.1 × 10³ m³. An observed anomaly was identified, where ΔQp became positive at small values of Vk and RAk, indicating an increase in peak discharge (Qp).
Downloads
[1] Bettencourt, L., & West, G. (2010). A unified theory of urban living. Nature, 467(7318), 912–913. doi:10.1038/467912a.
[2] Juwono, P. T., Limantara, L. M., & Amrie, S. (2019). The Effect of Land Use Change to the Depth and Area of Inundation in the Bang Sub-Watershed-Malang-Indonesia. International Journal of GEOMATE, 16(53), 238–244. doi:10.21660/2019.53.96946.
[3] Asmaranto, R., Fidari, J. S., Sari, R. R., & Pramesti, M. Y. (2024). Storm water management model to evaluate urban inundation in Lowokwaru and Blimbing sub-catchments in the city of Malang. IOP Conference Series: Earth and Environmental Science, 1311(1). doi:10.1088/1755-1315/1311/1/012063.
[4] Kardhana, H., Valerian, J. R., Rohmat, F. I. W., & Kusuma, M. S. B. (2022). Improving Jakarta’s Katulampa Barrage Extreme Water Level Prediction Using Satellite-Based Long Short-Term Memory (LSTM) Neural Networks. Water (Switzerland), 14(9), 1469. doi:10.3390/w14091469.
[5] Destry, E., Purnaweni, H., & Syafrudin, S. (2015). Evaluation on Sustainability of Technological Dimension Biopore Absorption Hole Management for Soil Water Conservation in Semarang City. Sains Tanah - Journal of Soil Science and Agroclimatology, 12(1), 249. doi:10.15608/stjssa.v12i1.249.
[6] Juliastuti, J., Setyandito, O., Cahyono, C., Suhendra, A., & Anda, M. (2025). A Review of Embankment Design on Artificial Islands by Dredge Material to Mitigate Flooding. Engineering, Technology and Applied Science Research, 15(2), 20805–20810. doi:10.48084/etasr.8758.
[7] Nayeb Yazdi, M., Owen, J. S., Lyon, S. W., & White, S. A. (2021). Specialty crop retention reservoir performance and design considerations to secure quality water and mitigate non-point source runoff. Journal of Cleaner Production, 321(25), 128925. doi:10.1016/j.jclepro.2021.128925.
[8] Kodoatie, R. J. (2021). Urban flood engineering and management. Penerbit Andi, Yogyakarta, Indonesia. (In Indonesian).
[9] Bezak, N., Kovačević, M., Johnen, G., Lebar, K., Zupanc, V., Vidmar, A., & Rusjan, S. (2021). Exploring options for flood risk management with special focus on retention reservoirs. Sustainability (Switzerland), 13(18), 10099. doi:10.3390/su131810099.
[10] Siregar, S., Sitompul, H., Wijaya, K., Yuzni, S., & Nurmaidah, N. (2023). Design of Retarding Basin as an Effort to Reduce Flood. J. Penelit. Pendidik IPA, 9(4), 1819–1824. doi:10.4108/eai.20-10-2022.2328849.
[11] Połomski, M., & Wiatkowski, M. (2024). Assessment of the Local Impact of Retention Reservoirs—A Case Study of Jagodno (Existing) and Sarny (Planned) Reservoirs Located in Poland. Water (Switzerland), 16(14), 2061. doi:10.3390/w16142061.
[12] da Silva Diniz, G. J., Scudelari, A. C., & de Medeiros, J. D. F. (2024). Performance of low impact development techniques in flood hazard mitigation in a closed urbanised catchment for extreme precipitation events. Urban Water Journal, 21(8), 987–1002. doi:10.1080/1573062X.2024.2397785.
[13] Amitaba, I. W., Juwono, P. T., Limantara, L. M., & Asmaranto, R. (2024). Real Time Operation Simulation Model with Early Release Reservoir Storage. Journal of Human, Earth, and Future, 5(4), 574–590. doi:10.28991/HEF-2024-05-04-03.
[14] Zaenal Dasylva, I., Sumiadi, S., Prasetyorini, L., & Mirdeklis Beselly, S. (2025). Flood Discharge Reduction Analysis of Ciawi and Sukamahi Dry Dams. Jurnal Teknik Pengairan, 16(1), 1–12. doi:10.21776/ub.pengairan.2025.016.01.1.
[15] Azizi, S., Ilderomi, A. R., & Noori, H. (2021). Investigating the effects of land use change on flood hydrograph using HEC-HMS hydrologic model (case study: Ekbatan Dam). Natural Hazards, 109(1), 145–160. doi:10.1007/s11069-021-04830-6.
[16] Gianfagna, C. C., Johnson, C. E., Chandler, D. G., & Hofmann, C. (2015). Watershed area ratio accurately predicts daily streamflow in nested catchments in the Catskills, New York. Journal of Hydrology: Regional Studies, 4(B), 583–594. doi:10.1016/j.ejrh.2015.09.002.
[17] Výleta, R., Danáčová, M., & Valent, P. (2017). Analysis of change of retention capacity of a small water reservoir. IOP Conference Series: Earth and Environmental Science, 92(1), 012075. doi:10.1088/1755-1315/92/1/012075.
[18] Tong, B., Chen, Y., Xu, Y., Zhang, X., & Ren, Y. (2024). Quantitation of Rainfall Retention Capacity for Small Reservoirs Considering Spatial Soil Moisture. Water (Switzerland), 16(21), 3114. doi:10.3390/w16213114.
[19] Młyński, D., Wałega, A., Ksiazek, L., Florek, J., & Petroselli, A. (2020). Possibility of using selected rainfall-runoff models for determining the design hydrograph in mountainous catchments: A case study in Poland. Water (Switzerland), 12(5), 1450. doi:10.3390/w12051450.
[20] Tahroudi, M. N., Ramezani, Y., de Michele, C., & Mirabbasi, R. (2021). Flood routing via a copula-based approach. Hydrology Research, 52(6), 1294–1308. doi:10.2166/NH.2021.008.
[21] Priyantoro, D., & Limantara, L. M. (2017). Conformity evaluation of synthetic unit hydrograph (case study at upstream Brantas sub watershed, East Java Province of Indonesia). Journal of Water and Land Development, 35(1), 173–183. doi:10.1515/jwld-2017-0082.
[22] Gupta, R. S. (2016). Hydrology and Hydraulic Systems. Waveland Press, Long Grove, United States.
[23] Triatmodjo, B. (2008). Applied Hydrology Yogyakarta. Beta Offset, Yogyakarta, Indonesia. (In Indonesian).
[24] Istiarto, M. P. (2014). One-Dimensional Flow Simulation with the HEC-RAS Hydrodynamics Programming Package. Universitas Gadjah Mada, Yogyakarta, Indonesia. (In Indonesian).
[25] Pakhale, G., Khosa, R., & Gosain, A. K. (2024). In Today’s World, Is It worth Performing Flood Frequency Analysis Using Observed Streamflow Data? Environmental Advances, 15(100485). doi:10.1016/j.envadv.2024.100485.
[26] Mansida, A., Gaffar, F., & Zainuddin, M. A. (2025). Mitigating Flood Peak Discharge with Biopore Absorption Holes (BAH) to Reduce Surface Runoff: Case Study of the Tanralili Sub-watershed. Jurnal Teknik Sipil, 32(1), 19-28. doi:10.5614/jts.2025.32.1.3.
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.![]()








