Clay Crack Initiation and Propagation Resistance Mechanism Using Municipal Solid Waste
Downloads
This study investigates the potential of black seed flour (Nigella sativa) as an additive to enhance the crack resistance of clay-based landfill liners, aiming to mitigate gas transfer and leachate formation in landfill environments. Two distinct clay types were mixed with varying proportions of black seed flour (10%, 20%, and 30% by weight). The crack propagation resistance was assessed through desiccation tests over short (24 hours) and medium (72 hours) durations. Parameters such as crack morphology, fracture toughness, and crack propagation time were analyzed using image analysis and mechanical testing. The addition of black seed flour significantly influenced the crack morphology and propagation characteristics. Clay type 2 exhibited optimal fracture toughness at 10% and 30% black seed flour concentrations. The presence of black seed flour delayed crack initiation and reduced crack width, indicating improved crack resistance. Comparative analysis with existing literature suggests that the incorporation of natural additives like black seed flour can enhance the structural integrity of landfill liners. This research introduces black seed flour as a sustainable, cost-effective additive to improve the mechanical properties of clay-based landfill liners. The study provides new insights into utilizing natural materials for environmental engineering applications, contributing to the development of more resilient and eco-friendly landfill liner systems.
Downloads
[1] Liu, J., Xu, H., Tao, Y., & Lyu, Q. (2024). Effects of clay content and subfreezing temperature on the freeze–thaw deformation properties of clayey soils. Catena, 239, 107916. doi:10.1016/j.catena.2024.107916.
[2] Mughieda, O. S., & Bani-Hani, K. A. (2007). Cracking of RC school building due to soil expansion. Jordan Journal of Civil Engineering, 1(4), 393–408.
[3] Namdar, A., Karimpour-Fard, M., Mughieda, O., Berto, F., & Muhammad, N. (2023). Crack simulation for the cover of the landfill – A seismic design. Frattura Ed Integrita Strutturale, 17(65), 112–134. doi:10.3221/IGF-ESIS.65.09.
[4] Xie, Y., Zhang, B., Liu, B., Zeng, Z., Zhang, Y., & Zheng, Y. (2022). Shrinkage cracking and strength deterioration of red clay under cyclic drying and wetting. Alexandria Engineering Journal, 61(3), 2574–2588. doi:10.1016/j.aej.2021.08.011.
[5] Vallejo, L. E. (1988). The brittle and ductile behavior of clay samples containing a crack under mixed mode loading. Theoretical and Applied Fracture Mechanics, 10(1), 73–78. doi:10.1016/0167-8442(88)90058-4.
[6] Vallejo, L. E. (1989). Fissure Parameters in Stiff Clays under Compression. Journal of Geotechnical Engineering, 115(9), 1303–1317. doi:10.1061/(asce)0733-9410(1989)115:9(1303).
[7] Lu, N., & Dong, Y. (2017). Correlation between Soil-Shrinkage Curve and Water-Retention Characteristics. Journal of Geotechnical and Geoenvironmental Engineering, 143(9), 4017054. doi:10.1061/(asce)gt.1943-5606.0001741.
[8] Al-Maamori, H. M. S., El Naggar, M. H., & Micic, S. (2019). Wetting effects and strength degradation of swelling shale evaluated from multistage triaxial test. Underground Space (China), 4(2), 79–97. doi:10.1016/j.undsp.2018.12.002.
[9] Al-Maamori, H. M. S., El Naggar, M. H., Micic, S., & Lo, K. Y. (2018). Influence of water and lubricant fluids on peak strength of queenston shale from southern Ontario. Canadian Geotechnical Journal, 55(4), 455–476. doi:10.1139/cgj-2016-0238.
[10] Namdar, A. (2012). Natural minerals mixture for enhancing concrete compressive strength. Frattura Ed Integrita Strutturale, 22, 26–30. doi:10.3221/IGF-ESIS.22.04.
[11] Namdar, A., Zakaria, I. Bin, Hazeli, A. B., Azimi, S. J., Razak, A. S. B. A., & Gopalakrishna, G. S. (2013). An experimental study on flexural strength enhancement of concrete by means of small steel fibers. Frattura Ed Integrita Strutturale, 26, 22–30. doi:10.3221/IGF-ESIS.26.03.
[12] Yu, C.-C., & Maclaren, V. (1995). A Comparison of Two Waste Stream Quantification and Characterization Methodologies. Waste Management & Research: The Journal for a Sustainable Circular Economy, 13(4), 343–361. doi:10.1177/0734242x9501300406.
[13] Guo, L., Li, W., & Namdar, A. (2021). Using recycled aggregate for seismically monitoring of embankment-subsoil model. Case Studies in Construction Materials, 15, 605. doi:10.1016/j.cscm.2021.e00605.
[14] Chen, Z., Kamchoom, V., & Chen, R. (2022). Landfill gas emission through compacted clay considering effects of crack pathway and intensity. Waste Management, 143, 215–222. doi:10.1016/j.wasman.2022.02.032.
[15] Xu, J. J., Tang, C. S., Cheng, Q., Xu, Q. L., Inyang, H. I., Lin, Z. Y., & Shi, B. (2022). Investigation on desiccation cracking behavior of clayey soils with a perspective of fracture mechanics: a review. Journal of Soils and Sediments, 22(3), 859-888. doi:10.1007/s11368-021-03082-y.
[16] Xie, Y., Wang, H., Guo, Y., Wang, C., Cui, H., & Xue, J. (2024). Effects of microplastic contamination on the hydraulic, water retention, and desiccation crack properties of a natural clay exposed to leachate. Journal of Environmental Management, 351, 119858. doi:10.1016/j.jenvman.2023.119858.
[17] Guo, H., Zhang, Q., Lu, Z., Wei, W., Lu, H., & Chen, H. (2024). Investigation on the hydraulic response of a bioengineered landfill cover system subjected to extreme drying-wetting cycle. Bulletin of Engineering Geology and the Environment, 83(1), 14. doi:10.1007/s10064-023-03518-4.
[18] Wu, T., Yang, H., Cheng, J., Chen, G., Xu, H., & Zhang, L. (2024). Theoretical Analysis of Landfill Gas Migration in Capillary Barrier Covers Considering Effects of Waste Temperature. Applied Sciences (Switzerland), 14(20), 9473. doi:10.3390/app14209473.
[19] Zhang, M. S., Chiu, C. F., & Wang, Y. N. (2025). Analysis of microbial methane oxidation capacity of landfill soil cover using quorum sensing. Environmental Research, 268, 120781. doi:10.1016/j.envres.2025.120781.
[20] Zhan, L. T., Ni, J. Q., Feng, S., Kong, L. G., & Feng, T. (2022). Saturated hydraulic conductivity of compacted steel slag-bentonite mixtures—A potential hydraulic barrier material of landfill cover. Waste Management, 144, 349–356. doi:10.1016/j.wasman.2022.04.004.
[21] Balkaya, M. (2019). Assessment of the geotechnical aspect of the use of paper mill sludge as landfill cover and bottom liner material. Desalination and Water Treatment, 172, 70–77. doi:10.5004/dwt.2019.25134.
[22] Niemczyk, M., Berenjkar, P., Wilkinson, N., Lozecznik, S., Sparling, R., & Yuan, Q. (2021). Enhancement of CH4 oxidation potential in bio-based landfill cover materials. Process Safety and Environmental Protection, 146, 943–951. doi:10.1016/j.psep.2020.12.035.
[23] Narani, S. S., Abbaspour, M., Mir Mohammad Hosseini, S. M., Aflaki, E., & Moghadas Nejad, F. (2020). Sustainable reuse of Waste Tire Textile Fibers (WTTFs) as reinforcement materials for expansive soils: With a special focus on landfill liners/covers. Journal of Cleaner Production, 247, 119151. doi:10.1016/j.jclepro.2019.119151.
[24] Ding, Y., Xiong, J., Zhou, B., Wei, J., Qian, A., Zhang, H., Zhu, W., & Zhu, J. (2019). Odor removal by and microbial community in the enhanced landfill cover materials containing biochar-added sludge compost under different operating parameters. Waste Management, 87, 679–690. doi:10.1016/j.wasman.2019.03.009.
[25] Rosli, N. A., Aziz, H. A., Selamat, M. R., & Lim, L. L. P. (2020). A mixture of sewage sludge and red gypsum as an alternative material for temporary landfill cover. Journal of Environmental Management, 263, 110420. doi:10.1016/j.jenvman.2020.110420.
[26] Apriyono, A., Yuliana, Y., Kamchoom, V., Leung, A. K., Jotisankasa, A., & Liangtong, Z. (2025). The effect of desiccation cracks on water infiltration in landfill cover under extreme climate scenarios. Waste Management, 196, 10–21. doi:10.1016/j.wasman.2025.02.021.
[27] Liu, J., Wang, Z., Hu, G., Xue, J., Bu, F., Jing, M., Song, Z., & Che, W. (2023). Cracking and erosion behaviors of sand–clay mixtures stabilized with microbial biopolymer and palm fiber. Science of the Total Environment, 905, 166991. doi:10.1016/j.scitotenv.2023.166991.
[28] Tao, G., Guo, E., Yuan, J., Chen, Q., & Nimbalkar, S. (2023). Permeability and Cracking of Compacted Clay Liner Improved by Nano-SiO2 and Sisal Fiber. KSCE Journal of Civil Engineering, 27(12), 5109–5122. doi:10.1007/s12205-023-1435-8.
[29] Li, D., Yang, B., Yang, C., Zhang, Z., & Hu, M. (2021). Effects of salt content on desiccation cracks in the clay. Environmental Earth Sciences, 80(19), 671. doi:10.1007/s12665-021-09987-8.
[30] Zhou, Z., & Xue, Q. (2024). Investigation of cracking behavior of fine-grained clays exposed to different humidity environments and engineering implications based on X-ray computed tomography. Construction and Building Materials, 450, 138643. doi:10.1016/j.conbuildmat.2024.138643.
[31] Khalid, U., Rehman, Z., & Ahmad, A. (2025). Coupled effect of cyclic wet-dry environment and vibration event on desiccation crack and mechanical characteristics of polypropylene fiber-reinforced clay. Transportation Geotechnics, 51, 101542. doi:10.1016/j.trgeo.2025.101542.
[32] Luo, Y., Hou, X., Zhang, J., Wang, Y., Hu, M., Jiang, G., & Tang, C. S. (2025). Exploring the effects of weather-driven dynamics of desiccation cracks on hydrological process of expansive clay slope: Insights from physical model test. Journal of Hydrology, 656, 133011. doi:10.1016/j.jhydrol.2025.133011.
[33] Gao, Q. F., Zeng, L., & Shi, Z. N. (2021). Effects of desiccation cracks and vegetation on the shallow stability of a red clay cut slope under rainfall infiltration. Computers and Geotechnics, 140, 104436. doi:10.1016/j.compgeo.2021.104436.
[34] Wan, Y., Xue, Q., Liu, L., & Wang, S. Y. (2018). Relationship between the shrinkage crack characteristics and the water content gradient of compacted clay liner in a landfill final cover. Soils and Foundations, 58(6), 1435–1445. doi:10.1016/j.sandf.2018.08.011.
[35] Gahlot, R., Verma, A., & Kumar, M. (2022). Geotechnical behavior of fly ash-coal ash and bentonite clay composite as a landfill barrier material with special emphasis on desiccation cracks. Environmental Research, 214, 113853. doi:10.1016/j.envres.2022.113853.
[36] El Hajjar, A., Ouahbi, T., Taibi, S., Eid, J., Hattab, M., & Fleureau, J. M. (2021). Assessing crack initiation and propagation in flax fiber reinforced clay subjected to desiccation. Construction and Building Materials, 278, 122392. doi:10.1016/j.conbuildmat.2021.122392.
[37] Tang, C. S., Cui, Y. J., Tang, A. M., & Shi, B. (2010). Experiment evidence on the temperature dependence of desiccation cracking behavior of clayey soils. Engineering Geology, 114(3–4), 261–266. doi:10.1016/j.enggeo.2010.05.003.
[38] Tang, C. S., Zhu, C., Leng, T., Shi, B., Cheng, Q., & Zeng, H. (2019). Three-dimensional characterization of desiccation cracking behavior of compacted clayey soil using X-ray computed tomography. Engineering Geology, 255, 1–10. doi:10.1016/j.enggeo.2019.04.014.
[39] Cortellazzo, G., Russo, L. E., Busana, S., Carbone, L., Favaretti, M., & Hangen, H. (2022). Field trial of a reinforced landfill cover system: performance and failure. Geotextiles and Geomembranes, 50(4), 655–667. doi:10.1016/j.geotexmem.2022.03.007.
[40] Li, J., Guan, L., Wang, Y., Zhu, B., & Chen, Y. (2024). Centrifuge modelling on seismic failure of MSW landfills with high water level. Soil Dynamics and Earthquake Engineering, 182, 108753. doi:10.1016/j.soildyn.2024.108753.
[41] Mukunoki, T., Nakano, T., Otani, J., & Gourc, J. P. (2014). Study of cracking process of clay cap barrier in landfill using X-ray CT. Applied Clay Science, 101, 558–566. doi:10.1016/j.clay.2014.09.019.
[42] Akhtar, S., Hollaender, H., & Yuan, Q. (2023). Impact of heat and contaminants transfer from landfills to permafrost subgrade in arctic climate: A review. Cold Regions Science and Technology, 206, 103737. doi:10.1016/j.coldregions.2022.103737.
[43] Yeşiller, N., Hanson, J. L., & Yee, E. H. (2015). Waste heat generation: A comprehensive review. Waste Management, 42, 166–179. doi:10.1016/j.wasman.2015.04.004.
[44] Li, N., Han, Z., Guo, N., Zhou, Z., Liu, Y., & Tang, Q. (2022). Microplastics spatiotemporal distribution and plastic-degrading bacteria identification in the sanitary and non-sanitary municipal solid waste landfills. Journal of Hazardous Materials, 438, 129452. doi:10.1016/j.jhazmat.2022.129452.
[45] Mukherjee, K., & Mishra, A. K. (2019). Hydro-Mechanical Properties of Sand-Bentonite-Glass Fiber Composite for Landfill Application. KSCE Journal of Civil Engineering, 23(11), 4631–4640. doi:10.1007/s12205-019-2015-9.
[46] Wu, Y., Gao, M., Zhang, X., Zhang, Y., & Ji, J. (2023). Effect of initial water content on the dewatering performance of freeze-thaw preconditioned landfill sludge. Environmental Research, 239, 117356. doi:10.1016/j.envres.2023.117356.
[47] Patil, M., Wanare, R., Dalal, P. H., Iyer, K. K. R., & Dave, T. N. (2023). A study on utilization of landfill mined soil like fraction for sustainable reduction in swelling and cracking potential for expansive and marine soils. Materials Today: Proceedings. doi:10.1016/j.matpr.2023.03.524.
[48] Qiang, X., Hai-Jun, L., Zhen-Ze, L., & Lei, L. (2014). Cracking, water permeability and deformation of compacted clay liners improved by straw fiber. Engineering Geology, 178, 82–90. doi:10.1016/j.enggeo.2014.05.013.
[49] Divya, P. V., Viswanadham, B. V. S., & Gourc, J. P. (2017). Centrifuge model study on the performance of fiber reinforced clay-based landfill covers subjected to flexural distress. Applied Clay Science, 142, 173–184. doi:10.1016/j.clay.2016.12.010.
[50] Andersland, O. B., & Al-Moussawi, H. M. (1987). Crack formation in soil landfill covers due to thermal contraction. Topics in Catalysis, 5(4), 445–452.
[51] Collins, A., Krause, M. J., Bessler, S. M., Brougham, A., McKnight, T., Strock, T., & Ateia, M. (2024). City-scale impacts of PFAS from normal and elevated temperature landfill leachates on wastewater treatment plant influent. Journal of Hazardous Materials, 480, 136270. doi:10.1016/j.jhazmat.2024.136270.
[52] Al-Heetimi, O. T., Van De Ven, C. J. C., Van Geel, P. J., & Rayhani, M. T. (2023). Impact of temperature on the performance of compost-based landfill biocovers. Journal of Environmental Management, 344, 118780. doi:10.1016/j.jenvman.2023.118780.
[53] Rowe, R. K., & Islam, M. Z. (2009). Impact of landfill liner time-temperature history on the service life of HDPE geomembranes. Waste Management, 29(10), 2689–2699. doi:10.1016/j.wasman.2009.05.010.
[54] Berge, N. D., Reinhart, D. R., Dietz, J. D., & Townsend, T. (2007). The impact of temperature and gas-phase oxygen on kinetics of in situ ammonia removal in bioreactor landfill leachate. Water Research, 41(9), 1907–1914. doi:10.1016/j.watres.2007.01.049.
[55] Bergaya, F., & Lagaly, G. (2013). General introduction: Clays, clay minerals, and clay science. Developments in Clay Science, 5, 1–19. doi:10.1016/B978-0-08-098258-8.00001-8.
[56] Zhang, Z., & Song, X. (2023). Nanoscale crack propagation in clay with water adsorption through reactive MD modeling. International Journal for Numerical and Analytical Methods in Geomechanics, 47(7), 1103–1133. doi:10.1002/nag.3507.
[57] Moorthy Rajendran, K., Chintala, V., Sharma, A., Pal, S., Pandey, J. K., & Ghodke, P. (2020). Review of catalyst materials in achieving the liquid hydrocarbon fuels from municipal mixed plastic waste (MMPW). Materials Today Communications, 24, 100982. doi:10.1016/j.mtcomm.2020.100982.
[58] Miandad, R., Rehan, M., Barakat, M. A., Aburiazaiza, A. S., Khan, H., Ismail, I. M. I., Dhavamani, J., Gardy, J., Hassanpour, A., & Nizami, A. S. (2019). Catalytic pyrolysis of plastic waste: Moving toward pyrolysis based biorefineries. Frontiers in Energy Research, 7(MAR), 1–17. doi:10.3389/fenrg.2019.00027.
[59] Yang, X., Liang, S., Hou, Z., Feng, D., Xiao, Y., & Zhou, S. (2022). Experimental Study on Strength of Polypropylene Fiber Reinforced Cemented Silt Soil. Applied Sciences (Switzerland), 12(16), 8318. doi:10.3390/app12168318.
[60] Abed, M. A., Fořt, J., Naoulo, A., & Essa, A. (2021). Influence of polypropylene and steel fibers on the performance and crack repair of self-compacting concrete. Materials, 14(19), 5506. doi:10.3390/ma14195506.
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.![]()















