Experimental Study on Electrochemical Corrosion Law of Rebar Under Alternating Magnetic Field
Downloads
The alternating magnetic field (MF) environment of coastal substations and magnetic levitation systems generates strong electromagnetic interference, which may affect the corrosion behavior of rebars in concrete structures. To clarify the influence law of rebar corrosion when exposed to an alternating MF, an alternating MF simulation test device was designed and manufactured according to the principle of alternating electromagnetic induction. The macroscopic corrosion morphology and electrochemical corrosion characteristics of rebars under alternating MF of different intensities were investigated by accelerated corrosion tests, electrochemical tests and natural corrosion electrochemical tests. The corrosion behavior mechanism of rebars under alternating MF was revealed. The results show that: 1) The diffusion rate and concentration of corrosion products in the solution are proportional to the magnetic induction strength. The alternating MF accelerates rebar corrosion. 2) The Ecorr of rebar shifts negatively with the magnetic induction strength increases, with a more pronounced shift in the early stage of corrosion than in the later stage. 3) Under the natural corrosion state, the 5 mT MF makes the open circuit potential (OCP) shift 12 mV negatively compared with that without MF. When the potential reaches 8mV, the passivation film begins to be destroyed. 4) The R1 of rebar is inversely proportional to the magnetic induction strength.
Downloads
[1] Prasad, N., Jain, S., & Gupta, S. (2019). Electrical Components of Maglev Systems: Emerging Trends. Urban Rail Transit, 5(2), 67–79. doi:10.1007/s40864-019-0104-1.
[2] Shi, J., Fang, W. S., Wang, Y. J., & Zhao, Y. (2014). Measurements and analysis of track irregularities on high speed maglev lines. Journal of Zhejiang University: Science A, 15(6), 385–394. doi:10.1631/jzus.A1300163.
[3] Felez, J., Vaquero-Serrano, M. A., Portillo, D., Antunez, S., Carcasi, G., Nocita, A., Schultz-Wildelau, M., Parrotta, L. A., Fasano, G., & Proietti, P. (2025). A New Concept of Hybrid Maglev-Derived Systems for Faster and More Efficient Rail Services Compatible with Existing Infrastructure. Sustainability (Switzerland), 17(11), 5056. doi:10.3390/su17115056.
[4] Gaspar, J., Cruz, T., Lam, C. T., & Simoes, P. (2023). Smart Substation Communications and Cybersecurity: A Comprehensive Survey. IEEE Communications Surveys and Tutorials, 25(4), 2456–2493. doi:10.1109/COMST.2023.3305468.
[5] Kryukov, A., Suslov, K., Seredkin, D., Voronina, E., Batukhtin, A., Ilyushin, P., & Shepovalova, O. (2025). Reducing electromagnetic pollution of the environment at main railway facilities. Management of Environmental Quality, 234. doi:10.1108/MEQ-04-2025-0234.
[6] Abreu Silveira, C., Da Costa, C., Costa E Silva, R., Soares, L., & Pugliese Guimaraes, J. (2006). Electromagnetic Environment Measurement under Steady-State Conditions in Utility Substations. 2006 IEEE/PES Transmission & Distribution Conference and Exposition: Latin America, 1–6. doi:10.1109/tdcla.2006.311511.
[7] Guo, B., Zhang, P., Jin, Y., & Cheng, S. (2008). Effects of alternating magnetic field on the corrosion rate and corrosion products of copper. Rare Metals, 27(3), 324–328. doi:10.1016/S1001-0521(08)60138-2.
[8] Xing, Y. C., Sun, Z. B., Han, Y. Q., & Zhang, D. X. (2025). Influence of alternating magnetic field on corrosion and microstructure of 2205 duplex stainless steel welded joints. Journal of Iron and Steel Research International, 32(5), 1341–1355. doi:10.1007/s42243-024-01398-w.
[9] Ma, Y., Peng, A., Su, X., Wang, L., & Zhang, J. (2021). Modeling Constitutive Relationship of Steel Bar Removed from Corroded PC Beams after Fatigue Considering Spatial Location Effect. Journal of Materials in Civil Engineering, 33(4), 4021019. doi:10.1061/(asce)mt.1943-5533.0003644.
[10] Peng, A., Ma, Y., Wang, L., & Zhang, J. (2023). Fractographic Analysis and Particle Filter-Based Fatigue Crack Propagation Prediction of Q550E High-Strength Steel. Journal of Materials in Civil Engineering, 35(11), 4023406. doi:10.1061/jmcee7.mteng-16335.
[11] Peng, A., Ma, Y., Huang, K., & Wang, L. (2024). Digital twin-driven framework for fatigue life prediction of welded structures considering residual stress. International Journal of Fatigue, 181, 108144. doi:10.1016/j.ijfatigue.2024.108144.
[12] Yang, J. (2019). Theoretical and experimental investigation on durability of concrete structures in coastal substation. Master’s thesis, Tongfang Knowledge Network (Beijing) Technology Co., Ltd, Beijing, China. doi:10.27135/d.cnki.ghudu.2019.000790.
[13] Li, W., Yang, J., & Jiang, P. (2023). Study of Reinforcement Corrosion in Reinforced Concrete Structures under the Action of Magnetic Fields. Total Corrosion Control, Tongfang Knowledge Network (Beijing) Technology Co., Ltd., Beijing, China. doi:10.13726/j.cnki.11-2706/tq.2023.09.087.05.
[14] Liu, Y., Yang J., & Jiang P. (2023). Study on Corrosion of A3 Carbon Steel in Concrete Simulation Solution Under AC. Total Corrossion Control, Tongfang Knowledge Network (Beijing) Technology Co., Ltd., Beijing, China. doi:10.13726/j.cnki.11-2706/tq.2023.09.082.05.
[15] Ye, X., Yang, J., Yang, W., Chen, T., Li, W., & Liu, Y. (2025). Theoretical and experimental study on the effect of magnetic field on the amount of steel bars corrosion. Corrosion Science, 255, 113082. doi:10.1016/j.corsci.2025.113082.
[16] Srivastava, K., & Nigam, N. (1988). Protection of mild steel in sulphuric acid by magnetic fields. British Corrosion Journal, 23(3), 172–175. doi:10.1179/000705988798270758.
[17] Chiba, A., Wu, W. C., & Terashita, A. (1996). Influence of the magnetically treated 3% sodium chloride solution on the corrosion of iron. Journal of Materials Science, 31(14), 3821–3825. doi:10.1007/BF00352797.
[18] Chiba, A., Tanaka, N., Ueno, S., & Ogawa, T. (1992). Inhibition by Magnetic Fields of the Corrosion of Iron in Sodium Chloride Solution. Zairyo-to-Kankyo, 41(5), 287–292. doi:10.3323/jcorr1991.41.287.
[19] Sagawa, M. (1982). Effect of a Local Magnetic Field on the Dissolution of Copper and Iron in Nitric Acid Solution. Transactions of the Japan Institute of Metals, 23(1), 38–40. doi:10.2320/matertrans1960.23.38.
[20] Costa, I., Oliveira, M. C. L., De Melo, H. G., & Faria, R. N. (2004). The effect of the magnetic field on the corrosion behavior of Nd-Fe-B permanent magnets. Journal of Magnetism and Magnetic Materials, 278(3), 348–358. doi:10.1016/j.jmmm.2003.12.1320.
[21] Choi, J. K., Ohtsuka, H., Xu, Y., & Choo, W. Y. (2000). Effects of a strong magnetic field on the phase stability of plain carbon steels. Scripta Materialia, 43(3), 221–226. doi:10.1016/S1359-6462(00)00394-8.
[22] Sato, A., Ogiwara, H., Miwa, T., & Nakabayashi, S. (2002). Influence of high magnetic field on the corrosion of carbon steel. IEEE Transactions on Applied Superconductivity, 12(1), 997–1000. doi:10.1109/TASC.2002.1018568.
[23] Ang, L. Y., Othman, N. K., Jalar, A., & Ismail, I. (2016). The Effect of Magnetic Field on Corrosion Inhibitor of Copper in 0.5 M HCl Solution. Procedia Chemistry, 19, 222–227. doi:10.1016/j.proche.2016.03.097.
[24] Wei, Z. (2009). Study on durability of concrete structure in magnetic field environment. Master’s thesis, School of Civil Engineering, Tongji University, Shanghai, China. doi:10.7666/d.y1449555.
[25] Memon, S. A., & Fromme, P. (2014). Stray Current Corrosion and Mitigation: A synopsis of the technical methods used in dc transit systems. IEEE Electrification Magazine, 2(3), 22–31. doi:10.1109/MELE.2014.2332366.
[26] Ogunsola, A., Sandrolini, L., & Mariscotti, A. (2015). Evaluation of stray current from a DC-electrified railway with integrated electric-electromechanical modeling and traffic simulation. IEEE Transactions on Industry Applications, 51(6), 5431–5441. doi:10.1109/TIA.2015.2429642.
[27] Dolara, A., Foiadelli, F., & Leva, S. (2012). Stray current effects mitigation in subway tunnels. IEEE Transactions on Power Delivery, 27(4), 2304–2311. doi:10.1109/TPWRD.2012.2203829.
[28] Zhang, Y., Fan, L., Liu, Z., Ma, D., Luo, H., Yang, X., Song, L., & Li, X. (2021). Effect of Alternating Magnetic Field on Electrochemical Behavior of 316L and TA2 in Simulated Seawater. Journal of Materials Engineering and Performance, 30(12), 9377–9389. doi:10.1007/s11665-021-06131-2.
[29] Choi, Y. S., Kim, J. G., & Lee, K. M. (2006). Corrosion behavior of steel bar embedded in fly ash concrete. Corrosion Science, 48(7), 1733–1745. doi:10.1016/j.corsci.2005.05.019.
[30] Zhou, B., Gu, X., Guo, H., Zhang, W., & Huang, Q. (2018). Polarization behavior of activated reinforcing steel bars in concrete under chloride environments. Construction and Building Materials, 164, 877–887. doi:10.1016/j.conbuildmat.2018.01.187.
[31] Peng, J., Cheng, X., Yang, Y., & Xiao, J. (2025). Chloride transport in concrete subjected to multiple cracks under drying-wetting cycles. Construction and Building Materials, 470, 140559. doi:10.1016/j.conbuildmat.2025.140559.
[32] Cheng, X., Peng, J., Cai, C. S., & Zhang, J. (2020). Experimental Study on Chloride Ion Diffusion in Concrete under Uniaxial and Biaxial Sustained Stress. Materials, 13(24), 5717. doi:10.3390/ma13245717.
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.![]()















