Development of Sustainable Self-Compacting Concrete Using Slag Sand and Expanded Clay Aggregates
Downloads
The objective of this study is to develop a sustainable self-compacting concrete (SCC) by partially replacing natural aggregates with slag sand (SS) and lightweight expanded clay aggregate (ECA) in combination with a ternary binder system, thereby enhancing both performance and environmental sustainability. The methodology involved preparing thirty SCC mixes of M30 grade using 65% Ordinary Portland Cement, 25% fly ash, and 10% silica fume as binder, with slag sand replacing river sand at 20–100% and ECA replacing coarse aggregate at 20–100%. Fresh properties were evaluated through slump flow, T50, V-funnel, L-box, and U-box tests following EFNARC guidelines, while mechanical strength (compressive, split tensile, and flexural) was measured at 7, 28, and 90 days. Durability was assessed through sulphuric acid and magnesium sulphate exposure, and microstructural behavior was studied using FTIR and TGA. Results revealed that mixes with higher ECA content enhanced flowability, with A2B10 achieving superior workability (slump flow 694 mm, T50 2.9 s), while A2B6 (20% SS + 20% ECA) achieved optimum strength (45.21 MPa compressive) and durability retention under aggressive exposures. The novelty of this work lies in demonstrating the synergistic role of slag sand and ECA in producing SCC with enhanced performance, reduced natural aggregate usage, and improved sustainability compared to conventional SCC.
Downloads
[1] Guo, Z., Zhang, J., Jiang, T., Jiang, T., Chen, C., Bo, R., & Sun, Y. (2022). Development of sustainable self-compacting concrete using recycled concrete aggregate and fly ash, slag, silica fume. European Journal of Environmental and Civil Engineering, 26(4), 1453–1474. doi:10.1080/19648189.2020.1715847.
[2] Gawah, Q., Al-Osta, M. A., Maslehuddin, M., Abdullah, M. A., Shameem, M., & Al-Dulaijan, S. U. (2023). Development of sustainable self-compacting concrete utilising silico manganese fume. European Journal of Environmental and Civil Engineering, 27(5), 1897–1918. doi:10.1080/19648189.2022.2102083.
[3] Burbano-Garcia, C., Hurtado, A., Silva, Y. F., Delvasto, S., & Araya-Letelier, G. (2021). Utilization of waste engine oil for expanded clay aggregate production and assessment of its influence on lightweight concrete properties. Construction and Building Materials, 273, 121677. doi:10.1016/j.conbuildmat.2020.121677.
[4] Ozguven, A., & Gunduz, L. (2012). Examination of effective parameters for the production of expanded clay aggregate. Cement and Concrete Composites, 34(6), 781–787. doi:10.1016/j.cemconcomp.2012.02.007.
[5] Abdel-Raouf, M., & Abou-Zeid, M. N. (2009). Properties of concrete incorporating magnetized water. Transportation research record, 2113(1), 62-71. doi:10.3141/2113-08.
[6] Chandra, S., & Berntsson, L. (2002). Lightweight Aggregate Concrete Microstructure. Lightweight Aggregate Concrete, 131–166, William Andrew, Norwich, United States. doi:10.1016/b978-081551486-2.50009-2.
[7] Riccadonna, D., Walsh, K., Schiro, G., Piazza, M., & Giongo, I. (2020). Testing of long-term behaviour of pre-stressed timber-to-timber composite (TTC) floors. Construction and Building Materials, 236, 117596. doi:10.1016/j.conbuildmat.2019.117596.
[8] Nahhab, A. H., & Ketab, A. K. (2020). Influence of content and maximum size of light expanded clay aggregate on the fresh, strength, and durability properties of self-compacting lightweight concrete reinforced with micro steel fibers. Construction and Building Materials, 233, 117922. doi:10.1016/j.conbuildmat.2019.117922.
[9] Drouna, K., Boucetta, T. A., Maherzi, W., & Ayat, A. (2025). Enhancing the properties of expanded clay aggregates through cementitious coatings based on waste glass powder and granulated slag: Impact on lightweight self-compacting concrete performance. Construction and Building Materials, 485, 141896. doi:10.1016/j.conbuildmat.2025.141896.
[10] Singh, R. B., Aggarwal, P., & Aggarwal, Y. (2019). Utilization of super pozzolanic material in the production of self-compacting concrete. Indian Concrete Journal, 98(2), 52–60.
[11] Zhao, H., Sun, W., Wu, X., & Gao, B. (2015). The properties of the self-compacting concrete with fly ash and ground-granulated blast furnace slag mineral admixtures. Journal of Cleaner Production, 95, 66-74. doi:10.1016/j.jclepro.2015.02.050.
[12] Verma, M., & Dev, N. (2022). Effect of ground granulated blast furnace slag and fly ash ratio and the curing conditions on the mechanical properties of geopolymer concrete. Structural Concrete, 23(4), 2015-2029. doi:10.1002/suco.202000536.
[13] de Matos, P. R., Oliveira, J. C., Medina, T. M., Magalhaes, D. C., Gleize, P. J., Schankoski, R. A., & Pilar, R. (2020). Use of air-cooled blast furnace slag as supplementary cementitious material for self-compacting concrete production. Construction and Building Materials, 262, 120102. doi:10.1016/j.conbuildmat.2020.120102.
[14] Huseien, G. F., Sam, A. R. M., & Alyousef, R. (2021). Texture, morphology and strength performance of self-compacting alkali-activated concrete: Role of fly ash as GBFS replacement. Construction and Building Materials, 270, 121368. doi:10.1016/j.conbuildmat.2020.121368.
[15] Singh, S., Nagar, R., & Agrawal, V. (2016). A review on Properties of Sustainable Concrete using granite dust as replacement for river sand. Journal of Cleaner Production, 126, 74-87. doi:10.1016/j.jclepro.2016.03.114.
[16] Sravanthi, M., Venkateswara Rao, S., Krishnaveni, K., Meenuga, V. K. L., & Kariveda, S. (2022). Studies on Compressive Strength Microstructural Analysis of Self-Compacting Mortar With Bacteria. Communications - Scientific Letters of the University of Žilina, 24(4), D183–D200. doi:10.26552/com.C.2022.4.D183-D200.
[17] Deeb, R., Ghanbari, A., & Karihaloo, B. L. (2012). Development of self-compacting high and ultra-high performance concretes with and without steel fibres. Cement and Concrete Composites, 34(2), 185–190. doi:10.1016/j.cemconcomp.2011.11.001.
[18] Kostrzanowska-Siedlarz, A., & Gołaszewski, J. (2015). Rheological properties and the air content in fresh concrete for self-compacting high performance concrete. Construction and Building Materials, 94, 555-564. doi:10.1016/j.conbuildmat.2015.07.051.
[19] Molaei Raisi, E., Vaseghi Amiri, J., & Davoodi, M. R. (2018). Mechanical performance of self-compacting concrete incorporating rice husk ash. Construction and Building Materials, 177, 148–157. doi:10.1016/j.conbuildmat.2018.05.053.
[20] Patil, A., Jayale, V., Arunachalam, K. P., Ansari, K., Avudaiappan, S., Agrawal, D., Kuthe, A. M., Alharbi, Y. R., Amir Khan, M., & Roco-Videla, Á. (2024). Performance Analysis of Self-Compacting Concrete with Use of Artificial Aggregate and Partial Replacement of Cement by Fly Ash. Buildings, 14(1), 143. doi:10.3390/buildings14010143.
[21] Zhao, H., Sun, W., Wu, X., & Gao, B. (2022). Sustainable self-compacting concrete containing high-amount industrial by-product fly ash as supplementary cementitious materials. Environmental Science and Pollution Research, 29(3), 3616-3628. doi:10.1007/s11356-021-15883-2.
[22] Guo, Z., Jiang, T., Zhang, J., Kong, X., Chen, C., & Lehman, D. E. (2020). Mechanical and durability properties of sustainable self-compacting concrete with recycled concrete aggregate and fly ash, slag and silica fume. Construction and Building Materials, 231, 117115. doi:10.1016/j.conbuildmat.2019.117115.
[23] Sasanipour, H., Aslani, F., & Taherinezhad, J. (2019). Effect of silica fume on durability of self-compacting concrete made with waste recycled concrete aggregates. Construction and Building Materials, 227, 116598. doi:10.1016/j.conbuildmat.2019.07.324.
[24] Azizi, M., & Samimi, K. (2025). Effect of silica fume on Self-compacting Earth Concrete: Compressive strength, durability and microstructural studies. Construction and Building Materials, 472, 140815. doi:10.1016/j.conbuildmat.2025.140815.
[25] Sheeba, K. R. J., Priya, R. K., Arunachalam, K. P., Avudaiappan, S., Maureira-Carsalade, N., & Roco-Videla, Á. (2023). Characterisation of Sodium Acetate Treatment on Acacia pennata Natural Fibres. Polymers, 15(9), 1996. doi:10.3390/polym15091996.
[26] Kavitha, S. A., Priya, R. K., Arunachalam, K. P., Avudaiappan, S., Maureira-Carsalade, N., & Roco-Videla, Á. (2023). Investigation on Properties of Raw and Alkali Treated Novel Cellulosic Root Fibres of Zea Mays for Polymeric Composites. Polymers, 15(7), 1802. doi:10.3390/polym15071802.
[27] Avudaiappan, S., Cendoya, P., Arunachalam, K. P., Maureira-Carsalade, N., Canales, C., Amran, M., & Parra, P. F. (2023). Innovative Use of Single-Use Face Mask Fibers for the Production of a Sustainable Cement Mortar. Journal of Composites Science, 7(6), 214. doi:10.3390/jcs7060214.
[28] Divyah, N., Prakash, R., Srividhya, S., Avudaiappan, S., Guindos, P., Carsalade, N. M., Arunachalam, K. P., Noroozinejad Farsangi, E., & Roco-Videla, Á. (2023). Experimental and Numerical Investigations of Laced Built-Up Lightweight Concrete Encased Columns Subjected to Cyclic Axial Load. Buildings, 13(6), 1444. doi:10.3390/buildings13061444.
[29] Raja, K. C. P., Thaniarasu, I., Elkotb, M. A., Ansari, K., & Saleel, C. A. (2021). Shrinkage study and strength aspects of concrete with foundry sand and coconut shell as a partial replacement for coarse and fine aggregate. Materials, 14(23), 7420. doi:10.3390/ma14237420.
[30] Uysal, M., & Tanyildizi, H. (2011). Predicting the core compressive strength of self-compacting concrete (SCC) mixtures with mineral additives using artificial neural network. Construction and Building Materials, 25(11), 4105–4111. doi:10.1016/j.conbuildmat.2010.11.108.
[31] Mohammed, M. K., Al-Hadithi, A. I., & Mohammed, M. H. (2019). Production and optimization of eco-efficient self-compacting concrete SCC with limestone and PET. Construction and Building Materials, 197, 734–746. doi:10.1016/j.conbuildmat.2018.11.189.
[32] Bentz, D. P., & Snyder, K. A. (1999). Protected paste volume in concrete: Extension to internal curing using saturated lightweight fine aggregate. Cement and Concrete Research, 29(11), 1863–1867. doi:10.1016/S0008-8846(99)00178-7.
[33] EFNARC. (2005). Specification and Guidelines for Self-Compacting Concrete. European Federation of National Associations Representing Concrete (EFNARC), Surrey, United Kingdom.
[34] Okamura, H., & Ouchi, M. (2003). Self-Compacting Concrete. Journal of Advanced Concrete Technology, 1(1), 5–15. doi:10.3151/jact.1.5.
[35] IS 516-1959. (2016). Methods of Tests for Strength of Concrete. Bureau of Indian Standards (BIS), New Delhi, India.
[36] Neville, A.M. (2011) Properties of Concrete. Pearson Education Limited, London, United Kingdom.
[37] Mehta, P. K., & Monteiro, P. J. (2006). Concrete microstructure, properties, and materials. McGraw-Hill Education, Columbus, United States.
[38] Bogas, J. A., Gomes, A., & Pereira, M. F. C. (2012). Self-compacting lightweight concrete produced with expanded clay aggregate. Construction and Building Materials, 35, 1013–1022. doi:10.1016/j.conbuildmat.2012.04.111.
[39] Zhu, W., Gibbs, J. C., & Bartos, P. J. M. (2001). Uniformity of in situ properties of self-compacting concrete in full-scale structural elements. Cement and Concrete Composites, 23(1), 57–64. doi:10.1016/S0958-9465(00)00053-6.
[40] Siddique, R. (2008). Waste materials and by-products in concrete. Springer, Berlin, Germany. doi:10.1007/978-3-540-74294-4.
[41] Nuruzzaman, M., Ahmad, T., Sarker, P. K., & Shaikh, F. U. A. (2023). Rheological behaviour, hydration, and microstructure of self-compacting concrete incorporating ground ferronickel slag as partial cement replacement. Journal of Building Engineering, 68, 106127. doi:10.1016/j.jobe.2023.106127.
[42] Revilla-Cuesta, V., Manso-Morato, J., Hurtado-Alonso, N., Santamaría, A., & San-José, J. T. (2024). Degradation under cyclic wet-dry aging of full-scale high-workability concrete maximizing sustainable raw materials. Case Studies in Construction Materials, 20, e03334. doi:10.1016/j.cscm.2024.e03334.
[43] Kockal, N. U., & Ozturan, T. (2011). Durability of lightweight concretes with lightweight fly ash aggregates. Construction and Building Materials, 25(3), 1430–1438. doi:10.1016/j.conbuildmat.2010.09.022.
[44] Rajamanickam, G., & Vaiyapuri, R. (2025). Evaluation of self compacting concrete performance incorporated with presoaked lightweight aggregates. Revista Materia, 30. doi:10.1590/1517-7076-RMAT-2024-0813.
[45] Revilla-Cuesta, V., Skaf, M., Faleschini, F., Manso, J. M., & Ortega-López, V. (2020). Self-compacting concrete manufactured with recycled concrete aggregate: An overview. Journal of Cleaner Production, 262, 121362. doi:10.1016/j.jclepro.2020.121362.
[46] Thomas, M.D.A. (2007) Optimizing the Use of Fly Ash in Concrete. Portland Cement Association, Skokie, United States.
[47] Mansur, A. Z., Djamaluddin, R., Parung, H., & Irmawaty, R. (2024). Study of Post-Spalling Reinforced Concrete Beam Repair Using Grouting and GFRP Reinforcement. Civil Engineering Journal, 10(1), 131–144. doi:10.28991/CEJ-2024-010-01-08.
[48] Jena, S., & Panigrahi, R. (2022). Evaluation of Durability and Microstructural Properties of Geopolymer Concrete with Ferrochrome Slag as Coarse Aggregate. Iranian Journal of Science and Technology - Transactions of Civil Engineering, 46(2), 1201–1210. doi:10.1007/s40996-021-00691-y.
[49] Qin, D., Zong, Z., Dong, C., Guo, Z., Tang, L., Chen, C., & Zhang, L. (2023). Long-term behavior of sustainable self-compacting concrete with high volume of recycled concrete aggregates and industrial by-products. Structural Concrete, 24(3), 3385-3404.
[50] Islam, S., Ara, G., Akhtar, U. S., Mostafa, M. G., Haque, I., Shuva, Z. M., & Samad, A. (2024). Development of lightweight structural concrete with artificial aggregate manufactured from local clay and solid waste materials. Heliyon, 10(15), 34887. doi:10.1016/j.heliyon.2024.e34887.
[51] Renukuntla, A., & Murthi, P. (2024). Bibliometric analysis on Characterization of Sustainable lightweight Self Compacting Concrete with Recycled Aggregate. E3S Web of Conferences, 559, 04001. doi:10.1051/e3sconf/202455904001.
[52] Nuruzzaman, M., Almeida, J., Amin, M. T. E., & Sarker, P. K. (2024). Performance of Sustainable Green Concrete Incorporating Quarry Dust and Ferronickel Slag as Fine Aggregate. Materials, 17(10), 2326. doi:10.3390/ma17102326.
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.![]()














