Spatial Variation of Shallow Soil Bearing Capacity Using SPT Data and MATLAB Analysis
Downloads
The current research examines the spatial distribution of shallow bearing capacity in Al-Najaf City through the use of Standard Penetration Test (SPT) data supplemented with advanced computational tools in MATLAB. A high-quality geotechnical survey of 464 boreholes was carried out, with drilling performed at depths ranging from 18 m to 35 m below the current ground surface. To assess the shallow foundations, the top 12 m of the soil profile was analyzed. To measure in-situ soil resistance, SPT measurements were taken at specified depth intervals in every borehole. The raw SPT N-values were adjusted for overburden pressure, an energy-correction parameter, and groundwater effects; other minor adjustments were considered negligible based on their minimal impact on the final dataset. These corrected N-values formed the basis for calculating both ultimate and allowable bearing capacities using empirically developed correlations. MATLAB surface-interpolation procedures were used to generate georeferenced thematic maps that depict the lateral variation of bearing capacity within the 0–12 m depth interval. The resulting spatial analysis shows a significant increase in the bearing capacity of the northern and western regions of Al-Najaf, correlating with increases in urbanization and infrastructure density. The predictive geotechnical maps developed in this study can be considered a highly robust, cost-effective, and timely tool for initial subsurface engineering surveys to guide sustainable city development, infrastructure design, and optimization of foundation engineering.
Downloads
[1] Karkush, M. O., Ziboon, A. R. T., and Hussien, H. M., (2013). Application of Remote Sensing Techniques in Geoenvironmental Engineering. International Journal of Geosciences and Geomatics, 1(1), 9-16.
[2] Karkush, M. O., Ahmed, M. D., Sheikha, A. A. H., & Al-Rumaithi, A. (2020). Thematic maps for the variation of bearing capacity of soil using SPTs and MATLAB. Geosciences (Switzerland), 10(9), 1–17. doi:10.3390/geosciences10090329.
[3] Sabaa, M. R., Salman, A. D., Dakhil, A. J., Jawad, S., Karkush, M., & Athab, A. (2023). Production Thematic Maps of Bearing Capacity of Shallow Foundation for Al-Basrah Soil Using Standard Penetration Data and GIS. Journal of Rehabilitation in Civil Engineering, 11(4), 77–90. doi:10.22075/JRCE.2023.27587.1668.
[4] Salman, A. D., Shimran Khadim, S., Karkush, M., & Al-Rumaithi, A. (2024). Production of maps for bearing capacity of the shallow foundation in Baghdad city using SPTs and MATLAB software. IOP Conference Series: Earth and Environmental Science, 1374(1), 12023. doi:10.1088/1755-1315/1374/1/012023.
[5] Al-Mirza, H. A., Falih, M. R., Wattan, S., Salman, A. D., & Karkush, M. (2024). Utilization of GIS to Generate a Digital Geotechnical Map of Baghdad City. IOP Conference Series: Earth and Environmental Science, 1374(1), 12052. doi:10.1088/1755-1315/1374/1/012052.
[6] Karkush, M. O., Sabaa, M. R., Salman, A. D., & Al-Rumaithi, A. (2022). Prediction of bearing capacity of driven piles for Basrah governatore using SPT and MATLAB. Journal of the Mechanical Behavior of Materials, 31(1), 39–51. doi:10.1515/jmbm-2022-0005.
[7] Amini, M., Deng, L., Hassan, W., Nawaz, M. N., Zidane, F. Z., & Fang, R. (2024). Integrative Geospatial Analysis: Unveiling Insights through GIS Modeling and Statistical Evaluation of SPT- N and Soil Types Data of New Kabul City, Afghanistan. Advances in Civil Engineering, 2024(1), 9925038. doi:10.1155/2024/9925038.
[8] Hassan, W., Alshameri, B., Nawaz, M. N., Ijaz, Z., & Qasim, M. (2022). Geospatial and statistical interpolation of geotechnical data for modeling zonation maps of Islamabad, Pakistan. Environmental Earth Sciences, 81(24), 547. doi:10.1007/s12665-022-10669-2.
[9] Sharo, A. A., Nusier, O. K., & Rababah, F. M. (2019). Spatial distribution of engineering soil properties in the northern region of the dead sea, Jordan. Jordan Journal of Civil Engineering, 13(2), 280–298.
[10] Aqeel, A., Nwokebuihe, S., Qaysi, S., El-Al, A. A., & Elkrry, A. (2023). Geotechnical Investigation, Modelling and Visualization of Shallow Subsurface Soil at Khobash District, Najran, Saudi Arabia. Jordan Journal of Earth and Environmental Sciences, 14(3), 182–194.
[11] Al-Mamoori, S.K., Attiyah, A.N., Al-Maliki, L.A., Al-Sulttani, A.H., El-Tawil, K., & Hussain, H.M. (2021). Seismic Risk Assessment of Reinforced Concrete Frames at Al-Najaf City-Iraq Using Geotechnical Parameters. Modern Applications of Geotechnical Engineering and Construction. Lecture Notes in Civil Engineering, Springer, Singapore. doi:10.1007/978-981-15-9399-4_28.
[12] Al-Mamoori, S. K., Al-Maliki, L. A. J., El-Tawel, K., Hussain, H. M., Al-Ansari, N., & Al Ali, M. J. (2019). Chloride, Calcium Carbonate and Total Soluble Salts Contents Distribution for An-Najaf and Al-Kufa Cities’ Soil by Using GIS. Geotechnical and Geological Engineering, 37(3), 2207–2225. doi:10.1007/s10706-018-0754-x.
[13] Jasim, I. A., Al-Maliki, L. A., & Al-Mamoori, S. K. (2024). Water corridors management: a case study from Iraq. International Journal of River Basin Management, 22(1), 1–11. doi:10.1080/15715124.2022.2079662.
[14] Al-Mamoori, S. K., Al-Maliki, L. A., Al-Sulttani, A. H., El-Tawil, K., & Al-Ansari, N. (2021). Statistical analysis of the best GIS interpolation method for bearing capacity estimation in An-Najaf City, Iraq. Environmental Earth Sciences, 80(20), 683. doi:10.1007/s12665-021-09971-2.
[15] Bowles, J. E. (1997). Foundation Analysis and Design. McCraw-Hill, Columbus, United States.
[16] Das, B. M., & Sivakugan, N. (2018). Principles of foundation engineering. Cengage learning, Boston, United States.
[17] Sivakugan, N., & Das, B. M. (2009). Geotechnical engineering: a practical problem solving approach. J. Ross Publishing, Plantation, United States.
[18] Burrough, P.A., McDonnell, R.A. and Lloyd, C.D. (2015) Principles of Geographical Information Systems. Oxford University Press, Oxford, United Kingdom.
[19] Al-Maliki, L. A. J., Al-Mamoori, S. K., El-Tawel, K., Hussain, H. M., Al-Ansari, N., & Jawad Al Ali, M. (2018). Bearing Capacity Map for An-Najaf and Kufa Cities Using GIS. Engineering, 10(05), 262–269. doi:10.4236/eng.2018.105018.
[20] Gourvenec, S., & Randolph, M. (2003). Effect of strength non-homogeneity on the shape of failure envelopes for combined loading of strip and circular foundations on clay. Geotechnique, 53(6), 575–586. doi:10.1680/geot.2003.53.6.575.
[21] Lutenegger, A. J. (2021). In Situ Testing Methods in Geotechnical Engineering. In Situ Testing Methods in Geotechnical Engineering. CRC Press, Boca Raton, United States. doi:10.1201/9781003002017.
[22] Fenton, G.A., & Griffiths, D.V. (2007). Review of Probability Theory, Random Variables, and Random Fields. Probabilistic Methods in Geotechnical Engineering. CISM Courses and Lectures, Springer, Vienna, Austria. doi:10.1007/978-3-211-73366-0_1.
[23] Peck, R. B., Hanson, W. E., & Thornburn, T. H. (1974). Foundation Engineering. 2nd Edition. John Wiley & Sons, New York, United States.
[24] Terzaghi, K., Peck, R. B., & Mesri, G. (1996). Soil mechanics in engineering practice. John Wiley & Sons, Hoboken, United States.
[25] Al-Mamoori, S. K., Jasem Al-Maliki, L. A., Al-Sulttani, A. H., El-Tawil, K., Hussain, H. M., & Al-Ansari, N. (2020). Horizontal and Vertical Geotechnical Variations of Soils According to USCS Classification for the City of An-Najaf, Iraq Using GIS. Geotechnical and Geological Engineering, 38(2), 1919–1938. doi:10.1007/s10706-019-01139-x.
[26] Duncan, J. M. (2000). Factors of Safety and Reliability in Geotechnical Engineering. Journal of Geotechnical and Geoenvironmental Engineering, 126(4), 307–316. doi:10.1061/(asce)1090-0241(2000)126:4(307).
[27] Fenton, G. A., & Griffiths, D. V. (2003). Bearing-capacity prediction of spatially random c - ø soils. Canadian Geotechnical Journal, 40(1), 54–65. doi:10.1139/t02-086.
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.![]()















