Methodology for Seismic Vulnerability Assessment of Pre-Code Masonry Buildings Using Region-Specific Data
Downloads
This study presents a comprehensive methodology for evaluating the seismic vulnerability of existing pre-code masonry structures through a multidisciplinary approach that integrates region-specific building typologies with site-specific seismic input. A key gap motivating this work is the absence of fragility curves for masonry structures typical of the region despite their prevalence and high seismic exposure. Recognizing the importance of reliable Seismic Hazard Assessment (SHA) in risk evaluation, a scenario-based Neo-Deterministic Seismic Hazard Assessment (NDSHA) approach was employed. This method incorporates a detailed understanding of the region’s tectonic regime, active fault systems, earth crust structure, and historical seismicity to produce realistic site-specific response spectra for analysis. The seismic capacity of the structures was assessed using multiple iterations of a nonlinear static (pushover) analysis, accounting for uncertainties in the material and geometric input parameters. The structural displacement was used as the primary damage index, and the damage was classified into five discrete damage grades. Consequently, new fragility and reliability curves were developed: (i) a general set for unreinforced masonry (URM) structures, (ii) four regional sets corresponding to distinct zones within the country, and (iii) two sets differentiating between regular and irregular plan configurations. The novelty of this study lies in the development of region-specific fragility curves for URM buildings, providing urgently needed tools for seismic risk assessment and supporting mitigation strategies and decision-making at the local and national levels.
Downloads
[1] Firoozi, A. A., & Firoozi, A. A. (2024). Geotechnical Innovations for Seismic-Resistant Urban Infrastructure. Journal of Civil Engineering and Urbanism, 14(3s), 346–355. doi:10.54203/jceu.2024.39.
[2] Booth, E. (2018). Dealing with earthquakes: the practice of seismic engineering ‘as if people mattered.’ Bulletin of Earthquake Engineering, 16(4), 1661–1724. doi:10.1007/s10518-017-0302-8.
[3] Freddi, F., Galasso, C., Cremen, G., Dall’Asta, A., Di Sarno, L., Giaralis, A., Gutiérrez-Urzúa, F., Málaga-Chuquitaype, C., Mitoulis, S. A., Petrone, C., Sextos, A., Sousa, L., Tarbali, K., Tubaldi, E., Wardman, J., & Woo, G. (2021). Innovations in earthquake risk reduction for resilience: Recent advances and challenges. International Journal of Disaster Risk Reduction, 60. doi:10.1016/j.ijdrr.2021.102267.
[4] Davis, I., & Alexander, D. (2015). Recovery from Disaster, 303–308, Routledge, London, United Kingdom. doi:10.4324/9781315679808-20.
[5] Salic Makreska, R., Drogreska, K., Sinadinovski, C., Neziri, Z., Jovanov, L., Milutinovic, Z., Pekevski, L., Najdovska, J., Atanasovska, D. C., & Tomic, D. (2023). Impact of Moderate Size Earthquakes through Skopje 2016 and Zagreb 2020 Case Studies. 2nd Croatian Conference on Earthquake Engineering ‒ 2CroCEE, 840–855. doi:10.5592/co/2crocee.2023.10.
[6] Sinadinovski, C., & Cernih, D. (2019, January). Analysis of records from the M5. 2 September 2016 Skopje earthquake. Geophysical Research Abstracts (Vol. 21), EBSCO Industries, Birmingham, United States.
[7] Romano, E., Negro, P., Formisano, A., Landolfo, R., Menna, C., Prota, A., & Hajek, P. (2023). Methodologies for the assessment of the combined seismic and energy retrofit of existing buildings: a new simplified method and application to case studies. Publications Office of the European Union, Luxembourg, Luxembourg.
[8] Takewaki, I. (2015). Beyond Uncertainties in Earthquake Structural Engineering. Frontiers in Built Environment, 1. doi:10.3389/fbuil.2015.00001.
[9] E. Rodriguez, M. (2024). Seismic-Resistant Design Regulations for Structures, Earthquake and Experimental Results Lessons. Journal of Building Technology, 6(2), 2545. doi:10.32629/jbt.v6i2.2545.
[10] Hakim, R. A., Alama, M. S., & Ashour, S. A. (2014). Seismic Assessment of RC Building According to ATC 40, FEMA 356 and FEMA 440. Arabian Journal for Science and Engineering, 39(11), 7691–7699. doi:10.1007/s13369-014-1395-x.
[11] Penelis, G., & Penelis, G. (2014). Seismic risk management. Concrete Buildings in Seismic Regions, CRC Press, Boca Raton, United States. doi:10.1201/b16399-19.
[12] UNISDR, U. (2015, March). Sendai framework for disaster risk reduction 2015–2030. In Proceedings of the 3rd United Nations World Conference on DRR, Sendai, Japan (Vol. 1). Proceedings of the 3rd United Nations World Conference on DRR, 18 March, Sendai, Japan.
[13] Bedini, M. A., & Bronzini, F. (2018). The post-earthquake experience in Italy. Difficulties and the possibility of planning the resurgence of the territories affected by earthquakes. Land Use Policy, 78, 303–315. doi:10.1016/j.landusepol.2018.07.003.
[14] Mohammadi, S., De Angeli, S., Boni, G., Pirlone, F., & Cattari, S. (2024). Review article: Current approaches and critical issues in multi-risk recovery planning of urban areas exposed to natural hazards. Natural Hazards and Earth System Sciences, 24(1), 79–107. doi:10.5194/nhess-24-79-2024.
[15] Rajkumari, S., Thakkar, K., & Goyal, H. (2022). Fragility analysis of structures subjected to seismic excitation: A state-of-the-art review. Structures, 40, 303–316. doi:10.1016/j.istruc.2022.04.023.
[16] Silva, V. (2019). Uncertainty and correlation in seismic vulnerability functions of building classes. Earthquake Spectra, 35(4), 1515–1539. doi:10.1193/013018EQS031M.
[17] Shabani, A., Kioumarsi, M., & Zucconi, M. (2021). State of the art of simplified analytical methods for seismic vulnerability assessment of unreinforced masonry buildings. Engineering Structures, 239. doi:10.1016/j.engstruct.2021.112280.
[18] Calvi, G. M., Pinho, R., Magenes, G., Bommer, J. J., Restrepo-Vélez, L. F., & Crowley, H. (2006). Development of seismic vulnerability assessment methodologies over the past 30 years. ISET Journal of Earthquake Technology, 43(3), 75–104. doi:10.63898/busy2147.
[19] Kassem, M. M., Mohamed Nazri, F., & Noroozinejad Farsangi, E. (2020). The seismic vulnerability assessment methodologies: A state-of-the-art review. Ain Shams Engineering Journal, 11(4), 849–864. doi:10.1016/j.asej.2020.04.001.
[20] Lagomarsino, S., Marino, S., & Cattari, S. (2019). Seismic Assessment of Existing URM Buildings in Codes: Comparison Between Different Linear and Nonlinear Static Procedures. Proceedings of the 7th International Conference on Computational Methods in Structural Dynamics and Earthquake Engineering (COMPDYN 2015), 3129-3136. doi:10.7712/120119.7137.19681.
[21] Zentner, I., Gündel, M., & Bonfils, N. (2017). Fragility analysis methods: Review of existing approaches and application. Nuclear Engineering and Design, 323, 245–258. doi:10.1016/j.nucengdes.2016.12.021.
[22] Ulrich, T., Negulescu, C., & Douglas, J. (2014). Fragility curves for risk-targeted seismic design maps. Bulletin of Earthquake Engineering, 12(4), 1479–1491. doi:10.1007/s10518-013-9572-y.
[23] Camayang, J. P., Dela Cruz, O., & Grutas, R. (2024). Integrating Building- and Site-Specific and Generic Fragility Curves into Seismic Risk Assessment: A PRISMA-Based Analysis of Methodologies and Applications. CivilEng, 5(4), 1011–1041. doi:10.3390/civileng5040050.
[24] Gusella, F., Bartoli, G., & Pintucchi, B. (2025). A simplified loss-based procedure for seismic risk mitigation at a territorial scale. Bulletin of Earthquake Engineering, 23(5), 1941–1968. doi:10.1007/s10518-025-02117-w.
[25] Nocevski, N. K. (1993). Definition of empirical and theoretical models for assessment of vulnerability level in high rise buildings, PhD Thesis, Institute of Earthquake Engineering & Engineering Seismology (IZIIS), Skopje, Macedonia.
[26] Petrovski, J., & Ristic, D. (1984). Reversed cyclic loading test of bridge column models. Report IZIIZ, 84-164.
[27] Dumova-Jovanoska, E. (2000). Fragility curves for reinforced concrete structures in Skopje (Macedonia) region. Soil Dynamics and Earthquake Engineering, 19(6), 455-466. doi:10.1016/S0267-7261(00)00017-8.
[28] Milutinovic, Z. V., & Trendafiloski, G. S. (2003). Risk-UE An advanced approach to earthquake risk scenarios with applications to different european towns. Contract: EVK4-CT-2000-00014, WP4: Vulnerability of current buildings, EVK4-CT-2000-00014, WP4: Vulnerability of Current Buildings; European Commission: Brussels, Belgium.
[29] Ristic, J., Guri, Z., & Ristic, D. (2024). Optionally Reinforced Columns Under Simulated Seismic and Time Varying Axial Loads: Advanced HYLSER-2 Testing. Civil Engineering Journal, 10(10), 3253–3268. doi:10.28991/CEJ-2024-010-10-09.
[30] Savor Novak, M., Atalic, J., Uros, M., Prevolnik, S., & Nastev, M. (2019). Seismic risk reduction in Croatia: mitigating the challenges and grasping the opportunities. Future Trends in Civil Engineering, 71–109. doi:10.5592/co/ftce.2019.04.
[31] Moretić, A., Chieffo, N., Stepinac, M., & Lourenço, P. B. (2023). Vulnerability assessment of historical building aggregates in Zagreb: implementation of a macroseismic approach. Bulletin of Earthquake Engineering, 21(4), 2045–2065. doi:10.1007/s10518-022-01596-5.
[32] Nikolić, Ž., Benvenuti, E., Runjić, L., Kozulić, V., & Škomrlj, N. O. (2022). Assessment of seismic vulnerability of existing masonry buildings in urban area. 10th International Congress of Croatian Society of Mechanics, 28-30 September, 2022, Pula, Croatia.
[33] Marinković, M., Bošković, M., Đorđević, F., Krtinić, N., & Žugić, Ž. (2024). Seismic Risk Assessment in School Buildings: A Comparative Study of Two Assessment Methods. Buildings, 14(8), 2348. doi:10.3390/buildings14082348.
[34] Predari, G., Stefanini, L., Marinković, M., Stepinac, M., & Brzev, S. (2023). Adriseismic Methodology for Expeditious Seismic Assessment of Unreinforced Masonry Buildings. Buildings, 13(2), 344. doi:10.3390/buildings13020344.
[35] Churilov, S., & Dumova-Jovanoska, E. (2013). In-plane shear behaviour of unreinforced and jacketed brick masonry walls. Soil Dynamics and Earthquake Engineering, 50, 85–105. doi:10.1016/j.soildyn.2013.03.006.
[36] Milkova, K., Šavor Novak, M., Marinkovic, M., & Dumova-Jovanoska, E. (2025). A Review of Existing Seismic Vulnerability Functions for Buildings in the Balkan Region. 3rd Croatian Conference on Earthquake Engineering - 3CroCEE, 3, 1157–1168. doi:10.5592/co/3crocee.2025.53.
[37] Grünthal, G., & Lorenzo Martín, F. (2009). European Macroseismic Scale 1998, European Macroseismic Scale 1998: EMS-98. GFZ German Research Center for Geosciences, Potsdam, Germany.
[38] Schneider, P. J., & Schauer, B. A. (2006). HAZUS—Its Development and Its Future. Natural Hazards Review, 7(2), 40–44. doi:10.1061/(asce)1527-6988(2006)7:2(40).
[39] Mahrous, A., AbdelRahman, B., & Galal, K. (2024). Seismic collapse risk assessment and fragility analysis of reinforced masonry core walls with boundary elements using the FEMA P695 methodology. Journal of Building Engineering, 98, 111225. doi:10.1016/j.jobe.2024.111225.
[40] Bulajic, B., & Manic, M. (2006). Selection of the appropriate methodology for the deterministic seismic hazard assessment on the territory of the Republic of Serbia. Facta Universitatis - Series: Architecture and Civil Engineering, 4(1), 41–50. doi:10.2298/fuace0601041b.
[41] Zanetti, L., Chiffi, D., & Petrini, L. (2023). Philosophical aspects of probabilistic seismic hazard analysis (PSHA): a critical review. Natural Hazards, 117(2), 1193–1212. doi:10.1007/s11069-023-05901-6.
[42] Gerstenberger, M. C., Marzocchi, W., Allen, T., Pagani, M., Adams, J., Danciu, L., Field, E. H., Fujiwara, H., Luco, N., Ma, K. F., Meletti, C., & Petersen, M. D. (2020). Probabilistic Seismic Hazard Analysis at Regional and National Scales: State of the Art and Future Challenges. Reviews of Geophysics, 58(2), e2019RG000653. doi:10.1029/2019RG000653.
[43] Cornell, C. A. (1968). Engineering seismic risk analysis. Bulletin of the Seismological Society of America, 58(5), 1583–1606. doi:10.1785/bssa0580051583.
[44] McGuire, R. K. (2008). Probabilistic seismic hazard analysis: Early history. Earthquake Engineering & Structural Dynamics, 37(3), 329–338. doi:10.1002/eqe.765.
[45] Milutinovic, Z., Salic, R., & Tomic, D. (2015). An overview on earthquake hazard and seismic risk management policies of Macedonia. Proceedings of the International Conference on Earthquake Engineering and Seismology (IZIIS-50), 12-16 May, 2015, Skopje, Northern Macedonia.
[46] Das, T. K., Choudhury, S., & Das, P. (2024). Correlation between seismic performance levels and damage index for regular RC frame buildings designed using the unified performance-based design method. Journal of Building Engineering, 96, 110565. doi:10.1016/j.jobe.2024.110565.
[47] McGuire, R. K. (2001). Deterministic vs. probabilistic earthquake hazards and risks. Soil Dynamics and Earthquake Engineering, 21(5), 377–384. doi:10.1016/S0267-7261(01)00019-7.
[48] Wang, Z. (2011). Seismic hazard assessment: Issues and alternatives. Pure and Applied Geophysics, 168(1–2), 11–25. doi:10.1007/s00024-010-0148-3.
[49] Sen, T. K. (2009). Probabilistic Seismic Hazard Analysis. In Fundamentals of Seismic Loading on Structures. John Wiley & Sons, Hoboken, United States. doi:10.1002/9780470742341.ch7.
[50] Huang, D., Wang, J. P., Brant, L., & Chang, S. C. (2012). Deterministic Seismic Hazard Analysis Considering Non-controlling Seismic Sources and Time Factors. Scalable Uncertainty Management. SUM 2012. Lecture Notes in Computer Science, 7520, Springer, Berlin, Germany. doi:10.1007/978-3-642-33362-0_42.
[51] Herrero-Barbero, P., Álvarez-Gómez, J. A., Tsige, M., & Martínez-Díaz, J. J. (2023). Deterministic seismic hazard analysis from physics-based earthquake simulations in the Eastern Betics (SE Iberia). Engineering Geology, 327. doi:10.1016/j.enggeo.2023.107364.
[52] Gupta, I. D. (2002). the State of the Art in Seismic Hazard Analysis. ISET Journal of Earthquake Technology, 311. doi:10.63898/wnkz4526.
[53] Elnashai, A. S.-E., & El-Khoury, R. R. (2004). Deterministic Assessment of Seismic Hazard. Earthquake Hazard in Lebanon. World Scientific Publishing, Singapore. doi:10.1142/9781848161177_0010.
[54] Ansari, A., Rao, K. S., & Jain, A. K. (2021). Seismic Hazard and Risk Assessment in Maharashtra: A Critical Review. Seismic Hazards and Risk. Lecture Notes in Civil Engineering, 116, Springer, Singapore. doi:10.1007/978-981-15-9976-7_4.
[55] Magrin, A., Peresan, A., Kronrod, T., Vaccari, F., & Panza, G. F. (2017). Neo-deterministic seismic hazard assessment and earthquake occurrence rate. Engineering Geology, 229, 95–109. doi:10.1016/j.enggeo.2017.09.004.
[56] Panza, G. F., Romanelli, F., & Vaccari, F. (2001). Seismic wave propagation in laterally heterogeneous anelastic media: Theory and applications to seismic zonation. Advances in Geophysics Volume 43, 1–95, Elsevier, Amsterdam, Netherlands. doi:10.1016/s0065-2687(01)80002-9.
[57] Sarwar, F., Vaccari, F., & Magrin, A. (2022). Neo-deterministic seismic hazard assessment for Pakistan. Earthquakes and Sustainable Infrastructure, 543–558, Elsevier, Amsterdam, Netherlands. doi:10.1016/b978-0-12-823503-4.00014-2.
[58] Arsovski, M. (1960). Some characteristics of the tectonic features of the central part of Pelagonian horst anticlinorium and its relation to the Vardar Zone. Geologic Survey of SRM, Skopje, 7, 76-94.
[59] Cavazza, W., Roure, F., Spakman, W., Stampfli, G. M., & Ziegler, P. A. (2004). The TRANSMED Atlas. The Mediterranean Region from Crust to Mantle. Springer, Berlin, Germany. doi:10.1007/978-3-642-18919-7.
[60] Milkova, K., Dumova-Jovanovska, E., Drogreshka, K., Chernih-Anastasovska, D., Pekevski, L., Romanelli, F., ... & Panza, G. (2018). Region specific application of neo-deterministic analysis for reliable seismic hazard assessment. 16th European Conference on Earthquake Engineering, 18-21 June, 2018, Thessaloniki, Greece.
[61] Milkova, K., Dumova-Jovanoska, E., Vaccari, F., Romanelli, F., & PANZA, G. F. (2019). Application of Neodeterministic Analysis for North Macedonia. Scientific Journal of Civil Engineering, 8(2), 91–94. doi:10.55302/sjce1982091m.
[62] Press, F., & Brace, W. F. (1966). Earthquake prediction. Science, 152(3729), 1575–1584. doi:10.1126/science.152.3729.1575.
[63] Dumova-Jovanoska, E., & Milkova, K. (2022). NDSHA-based vulnerability evaluation of precode buildings in Republic of North Macedonia: novel experiences. Earthquakes and Sustainable Infrastructure, Elsevier, Amsterdam, Netherlands. doi:10.1016/b978-0-12-823503-4.00023-3.
[64] Panza, G. F. (2017). NDSHA: robust and reliable seismic hazard assessment. arXiv Preprint, arXiv:1709.02945. doi:10.48550/arXiv.1709.02945.
[65] Fasan, M., Amadio, C., Noè, S., Panza, G., Magrin, A., Romanelli, F., & Vaccari, F. (2015). A new design strategy based on a deterministic definition of the seismic input to overcome the limits of design procedures based on probabilistic approaches. arXiv Preprint, arXiv:1509.09119. doi:10.48550/arXiv.1509.09119.
[66] Panza, G. F., Vaccari, F., Romanelli, F., Amadio, C., Fasan, M., & Magrin, A. (2016). A seismological and engineering perspective on the 2016 Central Italy earthquakes. International Journal of Earthquake and Impact Engineering, 1(4), 395. doi:10.1504/ijeie.2016.10004076.
[67] Dumova-Jovanoska, E., Aleksovski, G., Denkovska, L., Churilov, S., Milkova, K., Bogoevska, S., & Micevski, S. (2020). Seismic Vulnerability of Existing Masonry Buildings-Project Seismowall, Recent Results. 17th World Conference on Earthquake Engineering, 13-18 September, 2020, Sendai, Japan.
[68] Dumova-Jovanoska, E., Aleksovski, G., Denkovska, L., Churilov, S., Milkova, K., Bogoevska, S., & Micevski, S. (2021). Seismic Vulnerability of Existing Masonry Buildings in the Balcan Area – Case North Macedonia. 1st Croatian Conference on Earthquake Engineering, 129–140. doi:10.5592/co/1crocee.2021.159.
[69] Churilov, S., Micevski, S., & Dumova-Jovanoska, E. (2018). Ambient vibration testing of public unreinforced masonry buildings from the beginning of the 20th century. Proceedings of the 16th European Conference on Earthquake Engineering, 18-21 June, 2018, Thessaloniki, Greece.
[70] van der Mensbrugghe, D. (2023). A Summary Guide to the Latin Hypercube Sampling (LHS) Utility. GTAP Working Paper, 94. doi:10.21642/gtap.wp94.
[71] Morandi, P., Albanesi, L., Graziotti, F., Li Piani, T., Penna, A., & Magenes, G. (2018). Development of a dataset on the in-plane experimental response of URM piers with bricks and blocks. Construction and Building Materials, 190, 593–611. doi:10.1016/j.conbuildmat.2018.09.070.
[72] Fajfar, P., & Gašperšič, P. (1996). The N2 method for the seismic damage analysis of RC buildings. Earthquake Engineering and Structural Dynamics, 25(1), 31–46. doi:10.1002/(SICI)1096-9845(199601)25:1<31::AID-EQE534>3.0.CO;2-V.
[73] SDA-solutions GmbH (2025). Design and analysis of masonry buildings, SDA-solutions GmbH, Herzogenrath, Germany.
[74] Kappos, A. J., & Papanikolaou, V. K. (2016). Nonlinear Dynamic Analysis of Masonry Buildings and Definition of Seismic Damage States. The Open Construction and Building Technology Journal, 10(1), 192–209. doi:10.2174/1874836801610010192.
[75] Rosin, J., Butenweg, C., Boesen, N., & Gellert, C. (2018). Evaluation of the Seismic Behavior of a Modern URM-Building during the 2012 Northern Italy Earthquakes. Proceedings of the 16th European Conference on Earthquake Engineering, 18-21 June, 2018, Thessaloniki, Greece.
[76] Baker, J. W. (2015). Efficient analytical fragility function fitting using dynamic structural analysis. Earthquake Spectra, 31(1), 579–599. doi:10.1193/021113EQS025M.
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.![]()














