Groundwater Quality and Irrigation Suitability Assessment Using Geochemical and GIS-Based Approaches in Arid Regions
Downloads
In arid and semi-arid climates, such as Iraq's Salah Al-Din Governorate, the availability of surface water is much lower than demand, so groundwater becomes a vital resource. Groundwater is one of the basic needs for agricultural irrigation, and therefore this study presents a suitable groundwater suitability assessment for agricultural irrigation based on a comprehensive assessment of groundwater geochemical properties and spatial distribution using the kriging technique within Geographic Information Systems (GIS). Key water quality parameters, including EC, TDS, pH, Cl⁻, Na⁺, K⁺, NO₃⁻, HCO₃⁻, CO₃²⁻, SO₄²⁻, Ca²⁺, and Mg²⁺, were determined in a total of 51 wells across the study area. In addition, two wells located in the Al-Alam District of Salah Al-Din Governorate were remeasured in 2025 to assess changes in water levels. These measurements were compared to the static water levels recorded in 2014 for one well and in 2008 for the other. To determine irrigation suitability, the Water Quality Index, Sodium Adsorption Ratio, Residual Sodium Carbonate, and Total Hardness were calculated and analyzed. Groundwater quality was spatially variable, but several areas exceeded the FAO limits for safe agricultural use at all groundwater depths considered owing to salinity, sodicity, and anthropogenic contamination. Spatial mapping using GIS identified the risk zones and assisted in recommending appropriate management practices for sustainable groundwater development. Such findings emphasize the importance of regular monitoring together with appropriate irrigation management and remediation measures to reduce groundwater degradation and maintain agricultural development in Salah Al-Din Governorate.
Downloads
[1] McNabb, D.E., & Swenson, C.R. (2023). Groundwater: The Disappearing Resource. America’s Water Crises. Palgrave Macmillan, Cham, Switzerland. doi:10.1007/978-3-031-27380-3_6.
[2] Alwan, I. A., Karim, H. H., & Aziz, N. A. (2019). Groundwater aquifer suitability for irrigation purposes using multi-criteria decision approach in Salah Al-Din Governorate/Iraq. AgriEngineering, 1(2), 303-323. doi:10.3390/agriengineering1020023.
[3] Karandish, F., Liu, S., & de Graaf, I. (2025). Global groundwater sustainability: A critical review of strategies and future pathways. Journal of Hydrology, 657, 133060. doi:10.1016/j.jhydrol.2025.133060.
[4] Mohseni, B., Shahedi, K., Habibnejhad-Roshan, M., & Darzi-Naftchali, A. (2022). Improving groundwater sustainability through conservation strategies in a critical-prohibited coastal plain. Physics and Chemistry of the Earth, 127, 103176. doi:10.1016/j.pce.2022.103176.
[5] Hussein, M. A., Muhsun, S. S., & Abudi, Z. N. (2025). Assessment of Sulfate and Chloride Concentrations in Groundwater and Their Impact on Public Health and the Environment in Iraq:A review. Al Rafidain Journal of Engineering Sciences, 3(2), 87–98. doi:10.61268/88xcps56.
[6] Al-Dabbas, M. A., Al-Ansari, N., & Knutsson, S. (2018). Hydrogeochemical Assessment of Groundwater in Northern Iraq. Environmental Earth Sciences, 77(6), 256.
[7] Mahdi, A. A., & Al-Jaberi, R. T. (2021). Impact of Human Activities on Groundwater Quality in Central Iraq. Iraqi Journal of Science, 62(4), 1003–1015.
[8] Ismail, A. H., Shareef, M. A., Hassan, G., & Alatar, F. M. (2023). Hydrochemistry and water quality of shallow groundwater in the Tikrit area of Salah Al Din Province, Iraq. Applied Water Science, 13(10), 197. doi:10.1007/s13201-023-02008-y.
[9] Younis, O., Hussein, A. K., Attia, M. E. H., Rashid, F. L., Kolsi, L., Biswal, U., Abderrahmane, A., Mourad, A., & Alazzam, A. (2022). Hemispherical solar still: Recent advances and development. Energy Reports, 8, 8236-8258. doi:10.1016/j.egyr.2022.06.037.
[10] Nadhir Al-Ansari, N., Abbas, N., Laue, J., & Knutsson, S. (2020). Water Scarcity: Problems and Possible solutions. Journal of Earth Sciences and Geotechnical Engineering, 243–312. doi:10.47260/jesge/1127.
[11] Ali, S. H., & Al-Haidari, N. A. (2021). Environmental Risk Assessment of Industrial Activities on Groundwater in Baiji, Iraq. Journal of Environmental Science and Pollution Research, 28(18), 23052–23061.
[12] Al Satar, N. H. A., & Sachit, D. E. (2021). Assessment of Hospital Wastewater Quality and Management in Bab-Al Muadham Region at Baghdad. Journal of Engineering and Sustainable Development, 25(3), 44–50. doi:10.31272/jeasd.25.3.5.
[13] Al-Tameemi, I. M., Hasan, M. B., Al-Mussawy, H. A., & Al-Madhhachi, A. T. (2020). Groundwater Quality Assessment Using Water Quality Index Technique: A Case Study of Kirkuk Governorate, Iraq. IOP Conference Series: Materials Science and Engineering, 881(1), 012185. doi:10.1088/1757-899x/881/1/012185.
[14] Mohammad A, E., Taha A, E., Adnan S, F., Haithem S., R., & Haithem S., R. (2020). Study of qualitative properties of groundwater and its suitability for different uses in the Eastern of the Al- Dour city/ Salahaldin/ Iraq. Tikrit Journal of Pure Science, 25(2), 47. doi:10.25130/j.v25i2.957.
[15] Schroeter, S. A., Orme, A. M., Lehmann, K., Lehmann, R., Chaudhari, N. M., Küsel, K., Wang, H., Hildebrandt, A., Totsche, K. U., Trumbore, S., & Gleixner, G. (2025). Hydroclimatic extremes threaten groundwater quality and stability. Nature Communications, 16(1), 720. doi:10.1038/s41467-025-55890-2.
[16] Al-Sudani, H. I. Z. (2025). Groundwater Utilization and Water Quality in Khanaqin District, Diyala Governorate, Northeast of Iraq. Resources Environment and Information Engineering, 6(1), 305–312. doi:10.25082/reie.2024.01.004.
[17] Hussain, H. M., Al-Haidarey, M., Al-Ansari, N., & Knutsson, S. (2014). Evaluation and mapping groundwater suitability for irrigation using GIS in Najaf Governorate, IRAQ. Journal of Environmental Hydrology, 22, 4.
[18] Mahmood, A. A., Eassa, A. M., Muayad, H. M., & Israa, Y. S. (2013). Assessment of ground water quality at Basrah, Iraq by water quality index (WQI). Journal of University of Babylon, 21(7), 2531-2543.
[19] Radhi, N. A., Sachit, D. E., & Al-Madhhachi, A. S. T. (2025). Groundwater Quality Analyses for Irrigation Purposes in Salah Al-Din, Iraq: A Review. Al-Esraa University College Journal for Engineering Sciences, 7(11), 94-106. doi:10.70080/2790-7732.1062.
[20] Al-Saadi, R., Mohammed, A., & Younis, T. (2019). Evaluation of groundwater quality in Balad District, Iraq. Journal of Environmental Studies, 12(3), 45–60.
[21] Mahmoud, S., & Hassan, N. (2021). Heavy metal contamination in groundwater sources in Salah Al-Din Governorate. Iraqi Journal of Water Resources, 18(2), 75–89.
[22] Al-Tameemi, R., Mohammed, A., & Saleh, T. (2020). Hydrochemical analysis of groundwater in Samarra, Iraq. Journal of Water Research, 22(1), 67–80.
[23] Hamza, S., & Younis, T. (2021). Assessment of heavy metals in groundwater sources in Samarra. Iraqi Journal of Environmental Studies, 19(2), 89–104.
[24] Khalaf, A. T. (2018). Environmental and microbial study of some wells water in Samarra city compared to some wells in the vicinity. IOP Conference Series: Materials Science and Engineering, 454(1), 12102. doi:10.1088/1757-899X/454/1/012102.
[25] Jassim, M., & Al-Ani, K. (2022). Evaluation of groundwater quality for irrigation in Samarra, Iraq. Agricultural Water Management, 31(2), 125–140.
[26] Abed, M. F., Zarraq, G. A., & Ahmed, S. H. (2021). Hydrogeochemical assessment of groundwater quality and its suitability for irrigation and domestic purposes in Rural Areas, North of Baiji City-Iraq. Iraqi Journal of Science, 62(7), 2296–2306. doi:10.24996/ijs.2021.62.7.18.
[27] Stevanovic, Z., & Iurkiewicz, A. (2009). Groundwater management in northern Iraq. Hydrogeology Journal, 17(2), 367-378. doi:10.1007/s10040-008-0331-0.
[28] W.H.O. (2017). Guidelines for Drinking-water Quality (4th Ed.). World Health Organization (WHO), Geneva, Switzerland.
[29] Daoud, E. M. H., Abdul-Jabar, R. A., & Mohammed, S. J. (2023). Physical and chemical properties of groundwater in Al-Dour district. Proceedings of the 1st International Conference on Frontier of Digital Technology towards a Sustainable Society, 2808, 050016. doi:10.1063/5.0113416.
[30] Li, C., Gao, X., Li, S., & Bundschuh, J. (2020). A review of the distribution, sources, genesis, and environmental concerns of salinity in groundwater. Environmental Science and Pollution Research, 27(33), 41157–41174. doi:10.1007/s11356-020-10354-6.
[31] Saleh, S. A., Al-Ansari, N., & Abdullah, T. (2020). Groundwater Hydrology in Iraq. Journal of Earth Sciences and Geotechnical Engineering, 10(1), 1792–9660.
[32] Jassim, S. Z., & Goff, J. C. (2006). Geology of Iraq. Dolin, Prague and Moravian Museum, Brno, Czech Republic.
[33] Sissakian, V. K., & Jabbar, M. F. A. (2010). Morphometry and genesis of the main transversal gorges in North and Northeast Iraq. Iraqi Bulletin of Geology and Mining, 6(1), 95-120.
[34] Mather, J. (2020). Collection and analysis of groundwater samples. Geochemical Processes, Weathering and Groundwater Recharge in Catchments, 167–184, CRC Press, Boca Raton, United States. doi:10.1201/9781003077916-6.
[35] Ayers, R. S., & Westcot, D. W. (1985). Water quality for agriculture. Food and agriculture organization of the United Nations, Rome, Italy.
[36] USDA-NRCS. (1997). National Engineering Handbook, Part 652 – Irrigation Guide. Natural Resources Conservation Service, United States Department of Agriculture, Washington, United States.
[37] Richards, L. A. (1954). Diagnosis and improvement of saline and alkali soils (No. 60). US Government Printing Office, Washington, United States.
[38] Sawyer, C. N., McCarty, P. L., & Parkin, G. F. (2003). Chemistry for environmental engineering and science. McGraw-Hill, New York, United States.
[39] Nageswara Rao, K., Swarna Latha, P., & Ramesh Kumar, P. V. (2022). Groundwater quality assessment for irrigation use in the Godavari Delta region of east coast India using IRWQI and GIS. Water Supply, 22(3), 2612-2629. doi:10.2166/ws.2021.454.
[40] Tiwari, T. N., & Mishra, M. (1985). A preliminary assignment of water quality index to major Indian rivers. Indian Journal of Environmental Protection, 5(4), 276–279.
[41] F.A.O. (2019). Iraq – Water Report 37. Food and Agriculture Organization of the United Nations (FAO), Rome, Italy.
[42] Salehi, M., & Oral, H. V. (2023). An Example of Kriging Method based on Environmental Temperature for Altitude Mapping Using ArcGIS Software. Gazi University Journal of Science Part A: Engineering and Innovation, 10(4), 392–401. doi:10.54287/gujsa.1339151.
[43] ESRI. (2025). ArcGIS: How Kriging Works. Environmental Systems Research Institute (ESRI), Redlands, United States. Available online: https://pro.arcgis.com/en/pro-app/3.3/tool-reference/spatial-analyst/how-kriging-works.htm (accessed on November 2025).
[44] Abed, E. H., Hassan, W. H., & Faisal, A. A. H. (2021). Using of geographical information system and water quality index for evaluation of groundwater quality in the Dammam Zone, Faddak farm, Karbala, Iraq. Journal of Physics: Conference Series, 1973(1), 12181. doi:10.1088/1742-6596/1973/1/012181.
[45] Hamed, M. H., Dara, R. N., & Kirlas, M. C. (2024). Groundwater vulnerability assessment using a GIS-based DRASTIC method in the Erbil Dumpsite area (Kani Qirzhala), Central Erbil Basin, North Iraq. Journal of Groundwater Science and Engineering, 12(1), 16–33. doi:10.26599/JGSE.2024.9280003.
[46] Muneer, M., Khan, M. A., Shinwari, F. U., Ahmed, I., Siyar, S. M., Alshehri, F., & Shahab, M. (2025). Assessment of groundwater intrinsic vulnerability using GIS-based DRASTIC method in district Karak, Khyber Pakhtunkhwa, Pakistan. Frontiers in Water, 7, 1540703. doi:10.3389/frwa.2025.1540703.
[47] Al Maliki, A., Kumar, U. S., Falih, A. H., Sultan, M. A., Al-Naemi, A., Alshamsi, D., ... & Sabarathinam, C. (2024). Geochemical processes, salinity sources and utility characterization of groundwater in a semi-arid region of Iraq through geostatistical and isotopic techniques. Environmental Monitoring and Assessment, 196(4), 365. doi:10.1007/s10661-024-12533-1.
[48] Alatar, F. M., Ismail, A. H., Shareef, M. A., & Boncescu, C. (2023). Hydrochemistry of Groundwater in AL Jallam Desert, Salah Al-Din Governorate, Iraq. Journal of Techniques, 5(3), 15–25. doi:10.51173/jt.v5i3.1755.
[49] Hadi, S. H., & Alwan, H. H. (2020). Surface water-groundwater interaction in Diwaniya, southern Iraq using isotopic and chemical techniques. The Iraqi Geological Journal, 89-112.
[50] Abbas, A. H. (2017). Softening of Groundwater in Tikrit University by Using Reverse Osmosis Membrane Technique. Journal of Environmental Studies, 17(1), 1-10. doi:10.21608/jesj.2017.204069.
[51] Dalas, M. S., Farhan, M. G., & Altae, M. (2022). Evaluation of physical and chemical properties of water from some wells in Balad district within Salah al-Din governorate. Tikrit Journal of Pure Science, 27(4), 23–30. doi:10.25130/tjps.v27i4.29.
[52] Al-Gburi, H. F., Al-Ali, I. A., Dar, F. A., & Al-Sheikh, O. N. (2024). Groundwater quality assessment and pollution sources identification using statistical analyses at Missan Governorate, Southeast Iraq. Discover Sustainability, 5(1), 416. doi:10.1007/s43621-024-00578-8.
[53] Ahmed, S. H., Ibrahim, A. K., & Abed, M. F. (2023). Assessing the Quality of the Groundwater and the Nitrate Exposure, North Salah Al-Din Governorate, Iraq. Tikrit Journal of Engineering Sciences, 30(1), 25–36. doi:10.25130/tjes.30.1.3.
[54] Ismail, A. H., Shareef, M. A., & Mahmood, W. (2018). Hydrochemical characterization of groundwater in Balad district, Salah Al-din governorate, Iraq. Journal of Groundwater Science and Engineering, 6(4), 306-322.
[55] Dalas, M. S., Farhan, M. G., & Altae, M. (2022). Evaluation of physical and chemical properties of water from some wells in Balad district within Salah al-Din governorate. Tikrit Journal of Pure Science, 27(4), 23-30.
[56] Mahmood, W., Ismail, A. H., & Shareef, M. A. (2019). Assessment of potable water quality in Balad city, Iraq. IOP Conference Series: Materials Science and Engineering, 518(2), 022002. doi:10.1088/1757-899X/518/2/022002.
[57] Al-Ansari, N., Ali, A., & Knutsson, S. (2014). Present conditions and future challenges of water resources problems in Iraq. Journal of Water Resource and Protection, 6(12), 1066-1098.
[58] Appelo, C. A. J., & Postma, D. (2004). Geochemistry, Groundwater and Pollution. CRC Press, London, United Kingdom. doi:10.1201/9781439833544.
[59] Jassas, H. A., Al-Bahadily, H. A., & Al-Saady, Y. I. (2019). Integrating hydrogeological, geophysical, and remote-sensing data to identify fresh groundwater resources in arid regions: a case study from Western Iraq. Environmental Earth Sciences, 78(16), 521. doi:10.1007/s12665-019-8501-z.
[60] Hem, J. D. (1985). Study and interpretation of the chemical characteristics of natural water. Department of the Interior, US Geological Survey, Reston, United States.
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.![]()















