Numerical Analysis on Fatigue Performance in Fillet Weld Roots of Steel Bridge Bearings
Downloads
Fillet weld roots near bridge supports are critical fatigue-prone details in steel bridges, particularly under high stress concentration. Fatigue cracks at these locations tend to be initiated internally, where detection and repair remain challenging with current techniques. Fatigue performance improvements are explored from the perspectives of structural design and epoxy insertion. Five actual bridges in the USA, China, and Japan were analyzed using a hybrid finite element modeling approach, employing low-precision girder models for load distribution and high-precision local support models with an introduced notch for Effective Notch Stress (ENS) evaluation. Both actual bridge case studies and numerical parametric analyses were conducted. Results indicate that increasing weld size effectively reduces ENS, while sole plate thickness has a limited effect. Bolts play a pivotal role in limiting relative displacement between the bottom flange and the sole plate, though their constraint range is localized. To address the limited effectiveness of structural adjustments, adhesive filling was introduced in areas beyond the bolt constraint range. Bonding-assisted welding with epoxy insertion achieved up to a 56% reduction in ENS and significantly improved fatigue performance. The findings confirm the potential of bonding-assisted welding for improving the durability of fillet weld roots in steel bridge supports and provide practical solutions to the difficult-to-detect root fatigue cracks.
Downloads
[1] Wright, W. J. (2012). Steel bridge design handbook: Bridge steels and their mechanical properties. No. FHWA-IF-12-052, Federal Highway Administration. Office of Bridge Technology, Washington, United States.
[2] Horvath, A., & Hendrickson, C. (1998). Steel versus Steel-Reinforced Concrete Bridges: Environmental Assessment. Journal of Infrastructure Systems, 4(3), 111–117. doi:10.1061/(asce)1076-0342(1998)4:3(111).
[3] Haghani, R., Al-Emrani, M., & Heshmati, M. (2012). Fatigue-prone details in steel bridges. Buildings, 2(4), 456–476. doi:10.3390/buildings2040456.
[4] Alencar, G., de Jesus, A., da Silva, J. G. S., & Calçada, R. (2019). Fatigue cracking of welded railway bridges: A review. Engineering Failure Analysis, 104, 154–176. doi:10.1016/j.engfailanal.2019.05.037.
[5] Fan, Y., Shuai, Y., Shuai, J., Zhang, T., Zhang, Y., Shi, L., & Shan, K. (2024). The effect of pipeline root weld microstructure on crack growth behaviour. Engineering Failure Analysis, 161, 108265. doi:10.1016/j.engfailanal.2024.108265.
[6] Hunter, R. N., Lang, A. S., & Carey, W. N. (1977). National Cooperative Highway Research Program Synthesis of Highway Practice 41: Bridge Bearings. Transportation Research Board, National Research Council, Washington, United States.
[7] Kaczinski, M., Oliver, K. (2022). Chapter 15 Bearing Design. Steel Bridge Design Handbook. American Institute of Steel Construction, Chicago, United States.
[8] Wang, Q., Okumatsu, T., Nakamura, S., Nishikawa, T., Wu, Q., & Chen, K. (2019). Fatigue Failure Analysis of Cracks near the Sole Plate of a Half-Through Steel-Arch Bridge. Journal of Bridge Engineering, 24(5), 5019004. doi:10.1061/(asce)be.1943-5592.0001380.
[9] Wang, W. J., Guo, J., Liu, Q. Y., Zhu, M. H., & Zhou, Z. R. (2009). Study on relationship between oblique fatigue crack and rail wear in curve track and prevention. Wear, 267(1–4), 540–544. doi:10.1016/j.wear.2008.12.100.
[10] Huang, C., Chen, T., Xia, Z., & Jiang, L. (2022). Numerical study of surface fatigue crack growth in steel plates repaired with CFRP. Engineering Structures, 268, 114743. doi:10.1016/j.engstruct.2022.114743.
[11] Ke, L., Li, Y., Chen, Z., Feng, Z., Yan, B., Zhu, F., & Yuan, P. (2023). Effect of microstructure on fatigue crack growth behavior of surface- and middle-layer materials of thick high-strength bridge steel plates. Fatigue & Fracture of Engineering Materials & Structures, 46(2), 485–500. doi:10.1111/ffe.13879.
[12] Ma, N., Feng, Z., Hiraoka, K., & Matsuzaki, T. (2024). Compressive residual stresses in LTT elongated bead welded in all positions for fatigue crack prevention of boxing fillet joints. Journal of Manufacturing Processes, 117, 82–94. doi:10.1016/j.jmapro.2024.02.059.
[13] Kühn, B., Lukic, M., Nussbaumer, A., Guenther, H. P., Helmerich, R., Herion, S., Kolstein, M.H.; Walbridge, S.; Androic, B.; Dijkstra, O.& Bucak, B. (2008). Assessment of existing steel structures-Recommendations for estimation of the remaining fatigue life. Office for Official Publications of the European Communities, Luxembourg, Luxembourg.
[14] Niwa, Y., Tateishi, K., Hanji, T., & Shimizu, M. (2024). Preventive Maintenance Measures Against Fatigue Cracks At Welded Joints of Sole Plates of Steel Bridges. Japanese Journal of JSCE, 80(5). doi:10.2208/jscejj.23-00234. (In Japanese).
[15] Hirohata, M. (2016). Static tensile strength characteristics of fillet welding lap joints assisted with bonding. Welding International, 30(1), 9–17. doi:10.1080/09507116.2014.921085.
[16] Mikihito, H., & Yoshito, I. (2018). Fatigue characteristics of patch plate joints by fillet welding assisted with bonding. Welding International, 32(4), 243–253. doi:10.1080/09507116.2017.1346217.
[17] Jiahao, M., Mikihito, H., Yifei, X., & Kyong-Ho, C. (2024). Fatigue performance of bonding-assisted fillet weld roots by inserting adhesive material. Fatigue & Fracture of Engineering Materials & Structures, 47(10), 3646–3657. doi:10.1111/ffe.14400.
[18] Mao, J., Hirohata, M., Jiang, F., & Hamasaka, D. (2026). Improving fatigue performance of fillet weld roots using soft metal insertion. Journal of Constructional Steel Research, 236, 110021. doi:10.1016/j.jcsr.2025.110021.
[19] Jiang, X., Lv, Z., Qiang, X., & Xu, Z. (2024). Fatigue performance of root-to-throat cracks repaired by bonding steel: experimental and numerical investigations. Journal of Constructional Steel Research, 212, 108296. doi:10.1016/j.jcsr.2023.108296.
[20] Radaj, D., Sonsino, C. M., & Fricke, W. (2006). Fatigue assessment of welded joints by local approaches. Woodhead Publishing Limited, Sawston, United Kingdom. doi:10.1533/9781845691882.
[21] Fricke, W. (2013). IIW guideline for the assessment of weld root fatigue. Welding in the World, 57(6), 753–791. doi:10.1007/s40194-013-0066-y.
[22] Iqbal, M., Karuppanan, S., Perumal, V., Ovinis, M., & Iqbal, M. (2025). Development of Novel Surrogate Models for Stress Concentration Factors in Composite Reinforced Tubular KT-Joints. Civil Engineering Journal (Iran), 11(4), 1458–1475. doi:10.28991/CEJ-2025-011-04-012.
[23] Vu, H. H., Vu, Q. A., & Pham, C. H. (2024). Global Buckling Strength of Girts with Inner Flange in Compression. Civil Engineering Journal, 10(11), 3531–3541. doi:10.28991/CEJ-2024-010-11-05.
[24] Zhang, G. (2012). Method of effective stress for fatigue: Part I - A general theory. International Journal of Fatigue, 37, 17–23. doi:10.1016/j.ijfatigue.2011.09.018.
[25] Fricke, W., Kahl, A., & Paetzold, H. (2006). Fatigue assessment of root cracking of fillet welds subject to throat bending using the structural stress approach. Welding in the World, 50(7–8), 64–74. doi:10.1007/BF03266538.
[26] Fricke, W. (2007). Round-robin study on stress analysis for the effective notch stress approach. Welding in the World, 51(3–4), 68–79. doi:10.1007/BF03266562.
[27] Sonsino, C. M., Fricke, W., De Bruyne, F., Hoppe, A., Ahmadi, A., & Zhang, G. (2012). Notch stress concepts for the fatigue assessment of welded joints - Background and applications. International Journal of Fatigue, 34(1), 2–16. doi:10.1016/j.ijfatigue.2010.04.011.
[28] Hobbacher, A. F. (2016). Recommendations for Fatigue Design of Welded Joints and Components. IIW Collection, Springer International Publishing, Cham, Switzerland. doi:10.1007/978-3-319-23757-2.
[29] Yoon, D. Y., Yoo, C. H., & Lee, S. C. (2004). On the behavior of sole plates in steel girders. Thin-Walled Structures, 42(1), 59–77. doi:10.1016/S0263-8231(03)00123-X.
[30] AASHTO. (2020). LRFD Bridge Design Specifications (9th Ed.). American Association of State Highway and Transportation Officials (AASHTO), Washington, United States.
[31] JTG D60-2015. (2015). General Specifications for Design of Highway Bridges and Culverts. Ministry of Transport of the People's Republic of China, Beijing, China. (In Chinese).
[32] TB 10002-2017. (2017). Code for Design on Railway Bridge and Culvert. (2017). Beijing: National Railway Administration of the People's Republic of China, Beijing, China. (in Chinese).
[33] Japan Road Association. (2017). Specifications for Highway Bridges. Japan Road Association, Tokyo, Japan . (In Japanese).
[34] Tao, G., & Xia, Z. (2007). Mean stress/strain effect on fatigue behavior of an epoxy resin. International Journal of Fatigue, 29(12), 2180–2190. doi:10.1016/j.ijfatigue.2006.12.009.
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.![]()















