The Effect of Fiberglass Paint Coating on the Shear and Flexural Strength of Concrete Blocks
Downloads
This study uses an experimental method to investigate the behavior of concrete blocks coated with fiber paint, focusing on their shear and flexural strength, ductility, stiffness, and energy dissipation to enhance their mechanical performance. The fiber paint coatings used in this study were applied in different thicknesses, namely 1 mm, 2 mm, and 3 mm. The results show that a 3 mm coating provided the highest improvement, with shear and flexural strengths increasing by 47.36% and 66.06%, respectively. Flexural ductility improved by up to 32%, while stiffness increased by 12% in flexure and 13% in shear. Energy dissipation also showed significant enhancement; total flexural energy increased from 1.38 kNmm to 10.76 kNmm at 3 mm, and shear energy dissipation reached 50.72 kNmm at 3 mm. These results confirm that fiber paint can enhance the shear and flexural strength, ductility, stiffness, and energy dissipation of concrete blocks. This study introduces fiber paint as a practical reinforcement method for concrete block materials, offering a simple, easy-to-apply, and cost-effective alternative that improves both mechanical and aesthetic performance.
Downloads
[1] SNI 2847-2019. (2019). Structural Concrete Requirements for Building Construction. Badan Standardisasi Nasional (BSN), Jakarta, Indonesia. (In Indonesian).
[2] Melinda, A. P., & Juliafad, E. (2022). Experimental Study of Masonry Wall Strengthened by Polypropylene Fiber Mortar. International Journal on Advanced Science, Engineering and Information Technology, 12(3), 1066–1072. doi:10.18517/ijaseit.12.3.11198.
[3] Multazam, Z., Yamamoto, K., Timsina, K., Gadagamma, C. K., & Meguro, K. (2024). Shaking table tests of a one-quarter scale model of concrete hollow block masonry houses retrofitted with fiber-reinforced paint. Scientific Reports, 14(1), 8041. doi:10.1038/s41598-024-58365-4.
[4] Mayorca, P., & Meguro, K. (2010). Strengthening of masonry structures using polypropylene bands. Japan Society of Civil Engineers 58th Annual Academic Conference, 28 February 2010, 1077-1078.
[5] SNI 03-0349-1989. (1989). Concrete bricks for wall masonry. Badan Standardisasi Nasional (BSN), Jakarta, Indonesia. (In Indonesian).
[6] Zahra, T., Thamboo, J., & Asad, M. (2021). Compressive strength and deformation characteristics of concrete block masonry made with different mortars, blocks and mortar beddings types. Journal of Building Engineering, 38, 102213. doi:10.1016/j.jobe.2021.102213.
[7] Imai, H., Minowa, C., Lanuza, A. G., Penarubia, H. C., Narag, I. C., Soridum, R. U., Okazaki, K., Narafu, T., Hanazato, T., & Inoue, H. (2015). A full-scale shaking table test on philippine concrete hollow blocks (CHB) masonry houses. Journal of Disaster Research, 10(1), 113–120. doi:10.20965/jdr.2015.p0113.
[8] Juliafad, E., Arifin, A. S. R., & Putri, P. Y. (2019). Brick Making Training According to Indonesian National Standards for School Dropouts. Cived, 6(4), 1–6. doi:10.24036/cived.v6i4.107719.
[9] Juliafad, E., & Andayono, T. (2021). Study on building permit awareness in West Sumatra, Indonesia. IOP Conference Series: Earth and Environmental Science, 708(1), 12093. doi:10.1088/1755-1315/708/1/012093.
[10] Juliafad, E., Restu, L. J., Yusmar, F., Putra, R. R., & Meguro, K. (2024). Experimental Study on Compressive Strength and Shear Strength of Masonry Unit with Fiber Glass and Polypropylene Fiber Paint Coating. Jurnal Teknologi, 86(6), 85–93. doi:10.11113/jurnalteknologi.v86.21658.
[11] Umair, S. M., Numada, M., Amin, M. N., & Meguro, K. (2015). Fiber reinforced polymer and polypropylene composite retrofitting technique for masonry structures. Polymers, 7(5), 963–984. doi:10.3390/polym7050963.
[12] Boen, T., Imai, H., Lenny, & Sarah, E. S. (2021). Masonry buildings strengthened with textile-fiber composite (TRC) layers and fiber-reinforced cementitious (FRC) layers. E3S Web of Conferences, 331, 05002. doi:10.1051/e3sconf/202133105002.
[13] Junior, R., & Juliafad, E. (2022). Interlocking Reinforcement Method of Red Brick Masonry Using 6mm Diameter Plain Reinforcement Steel. Journal Applied Science in Civil Engineering, 3(1), 33–37. doi:10.24036/asce.v3i1.321566. (In Indonesian).
[14] Rino, R., & Juliafad, E. (2023). Utilization of Petung Bamboo as Reinforcement on Red Brick Walls. Journal Applied Science in Civil Engineering, 4(1), 106-111. (In Indonesian).
[15] Chilton, K., Kadivar, M., & Hinkle, H. (2025). From Problems to Possibilities: Overcoming Commercialization Challenges to Scale Timber Bamboo in Buildings. Sustainability (Switzerland), 17(4), 1575. doi:10.3390/su17041575.
[16] Iroegbu, A. O. C., & Ray, S. S. (2021). Bamboos: From bioresource to sustainable materials and chemicals. Sustainability (Switzerland), 13(21), 12200. doi:10.3390/su132112200.
[17] Multazam, Z., Yamamoto, K., Timsina, K., Shanthanu, R., & Meguro, K. (2025). Enhancing seismic resilience in weak masonry units: the impact of rebar reinforcement in concrete hollow block masonry structures. Journal of Disaster Science and Management, 1(1). doi:10.1007/s44367-025-00004-4.
[18] Wang, Y., Li, B., Nong, Q., & Liu, X. (2025). Quasi-Static Testing of Unreinforced Masonry Walls Using Different Styles of Basalt Fiber Mortar Surface Reinforcements. Buildings, 15(7), 1074. doi:10.3390/buildings15071074.
[19] Yavartanoo, F., Kim, C. S., & Kang, T. H. K. (2025). Cost-Effective Retrofitting Method for Dry-Stack Masonry Walls Using Fiber-Reinforced Polymers. International Journal of Concrete Structures and Materials, 19(1), 48. doi:10.1186/s40069-025-00792-2.
[20] Tekeli, H., Yüksel, C., Anıl, Ö., & Mutlu, E. O. (2024). Experimental and numerical investigation of hysteretic earthquake behavior of masonry infilled RC frames with opening strengthened by adding rebar-reinforced stucco. Bulletin of Earthquake Engineering, 22(6), 3169–3207. doi:10.1007/s10518-024-01905-0.
[21] Sathiparan, N. (2020). State of art review on PP-band retrofitting for masonry structures. Innovative Infrastructure Solutions, 5(2), 62. doi:10.1007/s41062-020-00316-9.
[22] Thomason, J. L. (2019). Glass fibre sizing: A review. Composites Part A: Applied Science and Manufacturing, 127, 105619. doi:10.1016/j.compositesa.2019.105619.
[23] Li Li, H. (2021). Fiberglass Science and Technology. Springer International Publishing, Cham, Switzerland. doi:10.1007/978-3-030-72200-5.
[24] Yamamoto, K., Rajasekharan, S., & Meguro, K. (2020). Study on Moisture Effects on Masonry Retrofitted with Fiber Reinforced Paint. 17th World Conference on Earthquake Engineering, 13-18 September, 2020, Sendai, Japan.
[25] Juliafad, E., Ananda, R., Sulistyo, D., Suhendro, B., & Hidayat, R. (2019). Nonlinear Finite Element Method Analysis of after Fire Reinforced Concrete Beam Strengthened with Carbon Fiber Strip. Journal of Physics: Conference Series, 1175(1), 12019. doi:10.1088/1742-6596/1175/1/012019.
[26] Nofriadi, N., Dary, R. W., Sitompul, M., & Melinda, A. P. (2021). Experimental Study of Shear Capacity of Brick Walls with the Addition of Wire Mesh. Cived, 8(3), 185. doi:10.24036/cived.v8i3.114150. (In Indonesian).
[27] Acharya, A. (2020). Metal oxide glass fibers. Metal Oxide Glass Nanocomposites, 273–278. doi:10.1016/B978-0-12-817458-6.00016-0.
[28] Saleem, M. U., Numada, M., Amin, M. N., & Meguro, K. (2016). Seismic response of PP-band and FRP retrofitted house models under shake table testing. Construction and Building Materials, 111, 298–316. doi:10.1016/j.conbuildmat.2016.02.073.
[29] Yamamoto, K., Numada, M., & Meguro, K. (2015). Shake table tests on one-quarter scaled models of masonry houses retrofitted with fiber reinforced paint. 14th International Symposium on New Technologies for Urban Safety of Mega Cities in Asia, 29-31 October, 2015, Kathmandu, Nepal.
[30] SNI 15-2094-2000. (2000). Solid Red Brick for Wall Cladding. National Standardization Agency. Badan Standardisasi Nasional (BSN), Jakarta, Indonesia. (In Indonesian).
[31] ASTM C136/C136M-19. (2025). Standard Test Method for Sieve Analysis of Fine and Coarse Aggregates. ASTM International, Pennsylvania, United States. doi:10.1520/C0136_C0136M-19.
[32] ASTM C33/C33M-18. (2023). Standard Specification for Concrete Aggregates. ASTM International, Pennsylvania, United States. doi:10.1520/C0033_C0033M-18.
[33] SNI 03-4165-1996. (1996). Testing Method for Flexural Strength of Red Brick Walls in the Laboratory. Badan Standardisasi Nasional (BSN), Jakarta, Indonesia. (In Indonesian).
[34] Rivai, F. W. (2018). Diagonal Shear Test on Hook-Cement Brick Walls Based on ASTM Standard E519-02-2002. Bachelor Thesis, Universitas Islam Indonesia, Sleman, Indonesia. (In Indonesian).
[35] ASTM E519-02. (2017). Standard Test Method for Diagonal Tension (Shear) in Masonry Assemblages. ASTM International, Pennsylvania, United States. doi:10.1520/E0519-02.
[36] Yadav, S., Damerji, H., Keco, R., Sieffert, Y., Crété, E., Vieux-Champagne, F., Garnier, P., & Malecot, Y. (2021). Effects of horizontal seismic band on seismic response in masonry structure: Application of DIC technique. Progress in Disaster Science, 10, 100149. doi:10.1016/j.pdisas.2021.100149.
[37] Wuaten, H. M. (2022). Energy Dissipation in Columns Jacketed with Wire Mesh and Self-Compacting Concrete Under Cyclic Loads. Cantilever: Jurnal Penelitian Dan Kajian Bidang Teknik Sipil, 11(1), 55–64. doi:10.35139/cantilever.v11i1.136.
[38] Multazam, Z., Yamamoto, K., & Meguro, K. (2022). Diagonal Tension (Shear) Test of Full-Scale Concrete Hollow Blocks Masonry Assemblages Retrofitted By Fiber-Reinforced Paint. MDPI in OHOW 2022 – The 1st International Symposium on One Health, One World. MDPI, Basel, Switzerland. doi:10.3390/ohow2022-13617.
[39] Bahmani, H., Mostafaei, H., & Mostofinejad, D. (2025). Review of Energy Dissipation Mechanisms in Concrete: Role of Advanced Materials, Mix Design, and Curing Conditions. Sustainability (Switzerland), 17(15), 6723. doi:10.3390/su17156723.
[40] Chen, P. H., & Chung, D. D. L. (2013). Mechanical energy dissipation using cement-based materials with admixtures. ACI Materials Journal, 110(3), 279–289. doi:10.14359/51685661.
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.![]()















