The Role of Recycled Plastic Bottles in Enhancing Asphalt Longevity
Downloads
Producing “green” pavement is important in decreasing the negative effects of plastic on the environment and ensuring sustainable resource management. Because many worldwide strategies are aimed at reducing the use of plastic, this work studies a recycled polymer concrete modified by a defined amount of recycled plastic waste in asphalt. The specimens were prepared with a maximum optimal asphalt content using ±0.5% of the optimum level. The logic indicated that 11% plastic waste can be used as an alternative to the coarse aggregate. Experimental tests were carried out to examine moisture damage, short- and long-term aging, and compressive strength (rutting resistance). The measured properties were ITS, resilient modulus, and permanent deformation of the first load cycle and after 1200 load cycles using the PRLS device. In aging experiments, the resilient modulus was found to increase by 118% during the first cycle and by 40% after 1200 cycles. The decrease in permanent deformation was 40% and 48.5% after the first load cycle and after 1200 cycles, respectively. The results obtained in the moisture susceptibility test were within the required limit. Finally, the compressive strength of samples with asphalt content of 4.0%, 4.5%, and 5% was found to be 3660, 4120, and 2900 kPa, respectively. This achievement indicates the advantages of utilizing plastic waste in road construction to develop sustainable asphalt concrete with improved mechanical properties and reduced environmental impact, especially in hot climates such as Iraq, where it would be beneficial for rutting-sensitive roads.
Downloads
[1] Geyer, R., Jambeck, J. R., & Law, K. L. (2017). Production, use, and fate of all plastics ever made. Science Advances, 3(7), 1700782. doi:10.1126/sciadv.1700782.
[2] Kumar, B., & Kumar, N. (2023). Assessment of Marshall Stability of asphalt concrete with plastic waste using soft computing techniques. Multiscale and Multidisciplinary Modeling, Experiments and Design, 6(4), 733–745. doi:10.1007/s41939-023-00180-x.
[3] Sahoo, N. K., Tarai, B., Mohanta, K. A., Kumar, D., Tarasankar, P., Hota, S., & Mangaraj, A. (2022). Project on Preparation of Plastic Road Using Single Used Waste Plastic. International Journal for Research in Applied Science and Engineering Technology, 10(5), 1429–1436. doi:10.22214/ijraset.2022.42556.
[4] Zghair Chfat, A. H., Yaacob, H., Mohd Kamaruddin, N. H., Al-Saffar, Z. H., & Jaya, R. P. (2024). Performance of Asphalt Mixtures Modified with Nano-Eggshell Powder. Civil Engineering Journal, 10(11), 3699-3720. doi:10.28991/CEJ-2024-010-11-016.
[5] Hınıslıoglu, S. (2004). Use of waste high density polyethylene as bitumen modifier in asphalt concrete mix. Materials Letters, 58(3–4), 267–271. doi:10.1016/s0167-577x(03)00458-0.
[6] Costa, L. M. B., Silva, H. M. R. D., Peralta, J., & Oliveira, J. R. M. (2019). Using waste polymers as a reliable alternative for asphalt binder modification – Performance and morphological assessment. Construction and Building Materials, 198, 237–244. doi:10.1016/j.conbuildmat.2018.11.279.
[7] Al-Hadidy, A. I., & Yi-qiu, T. (2009). Effect of polyethylene on life of flexible pavements. Construction and Building Materials, 23(3), 1456–1464. doi:10.1016/j.conbuildmat.2008.07.004.
[8] Mashaan, N. (2022). Engineering Characterisation of Wearing Course Materials Modified with Waste Plastic. Recycling, 7(4), 61. doi:10.3390/recycling7040061.
[9] Aschuri, I., Woodward, D., & Woodside, A. (2008). The Improvement of Durability of Asphalt Concrete Using Modified Waste Plastic-Bitumen. Proceedings of the 6th ICPT, 20-23 July, 2008, Sapporo, Japan.
[10] Awad, A, Al-Manasir, K., Al-Adday, F., & Shadid, O. (2019). Utilizing of polyethylene and plastic wastes for paving asphalt modification in Jordan. International Journal of Current Research, 11(10). doi:10.24941/ijcr.34027.01.2019.
[11] Al-Tuwayyij, H., Al-Mukaram, N., & Musa, S. S. (2023). Impact of Plastic Waste on the Volumetric Characteristics and Resilient Modulus of Asphalt Concrete. Civil Engineering Journal (Iran), 9(4), 915–926. doi:10.28991/CEJ-2023-09-04-012.
[12] Molayem, M., Ameri, M., Aliha, M. R. M., Dehghanbanadaki, A., & Mahmoodinia, N. (2025). Evaluating Fracture Behavior of Nano-CaCO3–Modified Asphalt Concrete Mixtures at Intermediate Temperatures. Journal of Materials in Civil Engineering, 37(8), 04025227. doi:10.1061/jmcee7.mteng-19873.
[13] Nazhif, A. A., Nugroho, E. O., Rusdy, N. F. P., Kardhana, H., Nuraeni, S., Pradoto, R. G. K., Kuntoro, A. A., Mohammed, B. S., Dharmowijoyo, D. B. E., Nurkhaerani, F., Wijaya, A. R., Fauzi, M. F., & Rayya, R. (2024). The effect of paving block from plastic waste material in the urban drainage: Study case in residential areas. E3S Web of Conferences, 479, 3002. doi:10.1051/e3sconf/202447903002.
[14] Saleh, M., Ahmed, N., Penetrante, R., Moghaddam, T. B., & Hashemian, L. (2024). Development of a High-Performance Asphalt Concrete with Enhanced Low-Temperature Performance. Cold Regions Engineering 2024, 518–529. doi:10.1061/9780784485460.048.
[15] Maharaj, R., Maharaj, C., & Hosein, A. (2018). Performance of waste polymer modified road paving materials. Progress in Rubber, Plastics and Recycling Technology, 34(1), 19–33. doi:10.1177/147776061803400102.
[16] Zhao, S., Ouyang, J., & Zhou, L. (2025). Rheological Properties of Polyurethane-Modified Asphalt and Its Effect on the Performance of Porous Asphalt Mixes. Journal of Materials in Civil Engineering, 37(10), 04025327. doi:10.1061/jmcee7.mteng-20750.
[17] Qabur, A., Baaj, H., & El-Hakim, M. (2025). A Laboratory Study on Enhancing Asphalt Mixture Properties through Dry Mixing with High-Dose Multilayer Plastic Packaging Pellet Additives. Journal of Materials in Civil Engineering, 37(4). doi:10.1061/jmcee7.mteng-19101.
[18] Al-Fatlawi, S. A., Al-Jumaili, M. A., Eltwati, A., & Enieb, M. (2023). Experimental-numerical model of permanent deformation in asphalt paving mixtures modified with waste plastic and rubber. Oil and Gas Engineering, 2784, 060015. doi:10.1063/5.0140884.
[19] Musa, S. S., Al-Mukaram, N., & Dakhil, I. H. (2024). Asphalt binder modified with recycled tyre rubber. Open Engineering, 14(1), 20220495. doi:10.1515/eng-2022-0495.
[20] Lee, S. Y., & Le, T. H. M. (2023). Feasibility of Sustainable Asphalt Concrete Materials Utilizing Waste Plastic Aggregate, Epoxy Resin, and Magnesium-Based Additive. Polymers, 15(15), 3293. doi:10.3390/polym15153293.
[21] Uzan, J., Witczak, M. W., Scullion, T., & Lytton, R. L. (1992). Development and validation of realistic pavement response models. International Conference on Asphalt Pavements, 7th, 1992, Nottingham, United Kingdom.
[22] Witczak, M. W., Qi, X., & Mirza, M. W. (1995). Use of nonlinear subgrade modulus in AASHTO design procedure. Journal of transportation engineering, 121(3), 273-282. doi:10.1061/(ASCE)0733-947X(1995)121:3(273).
[23] Bahia, H. U. M. (1991). Low-temperature isothermal physical hardening of asphalt cements. The Pennsylvania State University, Pennsylvania, United States.
[24] Wang, X. Y. (2014). Properties prediction of ultra-high performance concrete using blended cement hydration model. Construction and Building Materials, 64, 1–10. doi:10.1016/j.conbuildmat.2014.04.084.
[25] Khan, M. I., Sutanto, M. H., Khan, K., Iqbal, M., Napiah, M. Bin, Zoorob, S. E., Klemeš, J. J., Bokhari, A., & Rafiq, W. (2022). Effective use of recycled waste PET in cementitious grouts for developing sustainable semi-flexible pavement surfacing using artificial neural network (ANN). Journal of Cleaner Production, 340, 130840. doi:10.1016/j.jclepro.2022.130840.
[26] ASTM Volume 04.03. (2013). Road and Paving Materials; Vehicle-pavement Systems. ASTM International, Pennsylvania, United States.
[27] Jabor, Z. & Azawi, E. (2014). Hot Mix Asphalt Concrete Pavement. Specifications of Roads and Bridges (SORB/R9), Part One: Road Works, vol. 1, Ministry of Construction and Housing, Baghdad, Iraq.
[28] AASHTO. (2013). Standard Specification for Transportation Materials and Methods of Sampling and Testing (14th Ed.). American Association of State Highway and Transportation Officials (AASHTO), Washington, United States.
[29] Saboo, N., & Kumar, P. (2016). Performance characterization of polymer modified asphalt binders and mixes. Advances in civil engineering, 2016(1), 5938270. doi:10.1155/2016/5938270.
[30] Airey, G. D. (2002). Rheological evaluation of ethylene vinyl acetate polymer modified bitumens. Construction and Building Materials, 16(8), 473–487. doi:10.1016/S0950-0618(02)00103-4.
[31] Bastidas-Martínez, J. G., & Rondon-Quintana, H. A. (2024). Assessment of asphalt binder content, temperature and loading rate in indirect tensile strength and resilient modulus tests of a hot-mix asphalt–Comparison with Marshall design method. Construction and Building Materials, 426, 136158. doi:10.1016/j.conbuildmat.2024.136158.
[32] Dalhat, M. A., Al-Abdul Wahhab, H. I., & Al-Adham, K. (2019). Recycled Plastic Waste Asphalt Concrete via Mineral Aggregate Substitution and Binder Modification. Journal of Materials in Civil Engineering, 31(8), 04019134. doi:10.1061/(asce)mt.1943-5533.0002744.
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.![]()















