Quantifying Slope Stability and Landslide Susceptibility Through Rainfall-Induced Geotechnical Assessment
Downloads
Landslides are a major hazard to people and infrastructure, especially in areas with weak geology and high rainfall. This study examined soil properties and slope stability in Ranau (RNU) and Kota Belud (KB), Sabah. Soil tests showed that RNU had 2–21% clay with cohesion of 3.49–9.7 kPa, while KB soils contained 2–17% clay, more sand and gravel, and much lower cohesion of 0.5–1.1 kPa, indicating weaker strength and higher permeability. Rainfall data from 2013–2023, provided by the Malaysian Meteorological Department, were used to develop Intensity-Duration-Frequency (IDF) curves. Results showed that 1-hour intensities increased from 0.92 mm/hr at ARI-2 to 2.18 mm/hr at ARI-100, reflecting the variation of extreme rainfall. Slope stability was analyzed using GeoStudio’s SEEP/W and SLOPE/W to simulate infiltration and compute the Factor of Safety (FOS). In RNU, FOS rose from 2.481 to 2.565 after 24 hours, showing stable slopes. In KB, FOS declined from 2.495 to 2.379 under ARI-100 rainfall, along with higher pore-water pressures. Both slopes remained above the safe limit of 1.50, but KB proved more vulnerable to long rainfall. Compared with earlier studies, this research introduces a decade-long dataset combined with numerical modelling to demonstrate the dynamic response of tropical slopes. The findings provide practical contributions to slope design, drainage management, and disaster risk reduction in regions experiencing similar climatic and geological conditions.
Downloads
[1] Dilley, M., Chen, R. S., Deichmann, U. (2005). Natural Disaster Hotspots: A Global Risk Analysis. World Bank, Washington, United States.
[2] Nor Diana, M. I., Muhamad, N., Taha, M. R., Osman, A., & Alam, M. M. (2021). Social vulnerability assessment for landslide hazards in Malaysia: A systematic review study. Land, 10(3), 315. doi:10.3390/land10030315.
[3] Majid, N. A. (2020). Historical landslide events in Malaysia 1993-2019. Indian Journal of Science and Technology, 13(33), 3387–3399. doi:10.17485/ijst/v13i33.884.
[4] Lee, J. U., Cho, Y. C., Kim, M., Jang, S. J., Lee, J., & Kim, S. (2022). The Effects of Different Geological Conditions on Landslide-Triggering Rainfall Conditions in South Korea. Water (Switzerland), 14(13), 2051. doi:10.3390/w14132051.
[5] Rahardjo, H., Ong, T. H., Rezaur, R. B., & Leong, E. C. (2007). Factors Controlling Instability of Homogeneous Soil Slopes under Rainfall. Journal of Geotechnical and Geoenvironmental Engineering, 133(12), 1532–1543. doi:10.1061/(asce)1090-0241(2007)133:12(1532).
[6] Majid, N. A., Taha, M. R., & Selamat, S. N. (2020). Historical landslide events in Malaysia 1993–2019. Indian Journal of Science and Technology, 13(33), 3387–3399.
[7] Komoo, I., Aziz, S., & Sian, L. C. (2011). Incorporating the Hyogo Framework for Action into landslide disaster risk reduction in Malaysia. Bulletin of the Geological Society of Malaysia, 57, 7–11. doi:10.7186/bgsm57201102.
[8] Ligong, S., Sidek, L. M., Hayder, G., & Mohd Dom, N. (2022). Application of Rainfall Threshold for Sediment-Related Disasters in Malaysia: Status, Issues and Challenges. Water (Switzerland), 14(20), 3212. doi:10.3390/w14203212.
[9] Roslee, R., & Tongkul, F. (2018). Engineering Geological Mapping on Slope Design in the Mountainous Area of Sabah Western, Malaysia. Pakistan Journal of Geology, 2(2), 01–10. doi:10.26480/pjg.02.2018.01.10.
[10] Ayu Sufiah Khairul, N., & Musta, B. (2022). Engineering Properties and Slope Inventory of Clayey Soil from the Trusmadi Formation in Bundu Tuhan, Sabah. IOP Conference Series: Materials Science and Engineering, 1229(1), 012010. doi:10.1088/1757-899x/1229/1/012010.
[11] Sharir, K., Roslee, R., Ern, L. K., & Simon, N. (2017). Landslide Factors and susceptibility mapping on natural and artificial slopes in Kundasang, Sabah. Sains Malaysiana, 46(9), 1531–1540. doi:10.17576/jsm-2017-4609-23.
[12] Rosly, M. H., Mohamad, H. M., Bolong, N., & Harith, N. S. H. (2022). An Overview: Relationship of Geological Condition and Rainfall with Landslide Events at East Malaysia. Trends in Sciences, 19(8), 3464-3464. doi:10.48048/tis.2022.3464.
[13] Sharir, K., Simon, N., Roslee, R., & administrator, administrator. (2019). Landslide Density Based on TIME Series. Journal of Science and Application Technology, 2(1), 33–39. doi:10.35472/281465.
[14] Roslee, R. (2020). Effects of Physical and Mechanical Properties of Residual Soil on Sliding Area At Bundu Tuhan, Sabah, Malaysia. Geological Behavior, 4(1), 18–25. doi:10.26480/gbr.01.2020.18.25.
[15] Mukhlisin, M., Matlan, S. J., Ahlan, M. J., & Taha, M. R. (2015). Analysis of rainfall effect to slope stability in Ulu Klang, Malaysia. Jurnal Teknologi, 72(3), 15–21. doi:10.11113/jt.v72.4005.
[16] Sharir, K., Roslee, R., Ern, L. K., & Simon, N. (2017). Landslide factors and susceptibility mapping on natural and artificial slopes in Kundasang, Sabah. Sains Malaysiana, 46(9), 1531-1540.
[17] Kamlun, U. K., Miuse, C. F., Puma, D. D., Mahali, M., Wong, W., & Phua, M. H. (2022). Mapping pre and post-earthquake land cover change in Melangkap, Kota Belud Sabah using multi-temporal satellite Landsat 8/OLI and Sentinel 2 Imagery. IOP Conference Series: Earth and Environmental Science, 1053(1), 012024. doi:10.1088/1755-1315/1053/1/012024.
[18] Walsh, R. P. D., Ellison, S., Los, S. O., Bidin, K., Sayer, A. M., & Tussin, A. M. (2013). Changes in large rainstorm magnitude-frequency over the last century in Sabah, Malaysian Borneo and their geomorphological implications. Holocene, 23(12), 1824–1840. doi:10.1177/0959683613507791.
[19] Akter, A., Noor, M. J. M. M., Goto, M., Khanam, S., Parvez, A., & Rasheduzzaman, M. (2019). Landslide disaster in Malaysia: An overview. International Journal of Innovative Research and Development, 8(6), 292-302.
[20] Matlan, S. J., Abdullah, S., Alias, R., & Mukhlisin, M. (2018). Effect of working rainfall and soil water index on slope stability in Ranau, Sabah. International Journal of Civil Engineering and Technology, 9(7), 1331-1341.
[21] Berita Harian. (2023). Ranau to Sandakan road impassable due to landslide. Berita Harian, Kuala Lumpur, Malaysia. Available online: https://www.bharian.com.my/berita/nasional/2023/01/1057643/jalan-ranau-ke-sandakan-tidak-boleh-dilalui-akibat-tanah-runtuh#google_vignette (accessed on November 2025).
[22] Dol, C. (2023). Heavy rain in Ranau causes mudflows and landslides. Daily Express, Kota Kinabalu, Malaysia. Available online: https://www.dailyexpress.com.my/news/220365/heavy-rain-in-ranau-causes-mudflows-and-landslides-/ (accessed on July 2025).
[23] Fong, D. R. (2024). Landslides on Mt Kinabalu after continuous heavy rain. The Star, Frisco, United States. Available online: https://www.thestar.com.my/news/nation/2024/06/24/landslides-on-mt-kinabalu-after-continuous-heavy-rain (accessed on July 2025).
[24] Sokial, S. (2025). Heavy rain triggers landslides and floods in Sabah. The Star, Frisco, United States. Available online: https://www.thestar.com.my/news/nation/2025/01/13/heavy-rain-triggers-landslides-and-floods-in-sabah (accessed on July 2025).
[25] Inus, K. (2025). Homestay in Kundasang damaged in landslide The Star, Frisco, United States. Available online: https://www.thestar.com.my/news/nation/2025/01/17/homestay-in-kundasang-damaged-in-landslide (accessed on November 2025).
[26] Kim, S. W., Chun, K. W., Kim, M., Catani, F., Choi, B., & Seo, J. I. (2021). Effect of antecedent rainfall conditions and their variations on shallow landslide-triggering rainfall thresholds in South Korea. Landslides, 18(2), 569-582. doi:10.1007/s10346-020-01505-4.
[27] Kristo, C., Rahardjo, H., & Satyanaga, A. (2017). Effect of variations in rainfall intensity on slope stability in Singapore. International Soil and Water Conservation Research, 5(4), 258–264. doi:10.1016/j.iswcr.2017.07.001.
[28] Ghani, A. N. C., Taib, A.M., & Hasbollah, D. Z. A. (2020). Effect of Rainfall Pattern on Slope Stability. Geotechnics for Sustainable Infrastructure Development. Lecture Notes in Civil Engineering, Springer, Singapore. doi:10.1007/978-981-15-2184-3_115.
[29] Zhang, L., Li, J., Li, X., Zhang, J., & Zhu, H. (2016). Rainfall-induced soil slope failure: stability analysis and probabilistic assessment. CRC Press, Boca Raton, United States. doi:10.1201/b20116.
[30] Rosly, M. H., Mohamad, H. M., Bolong, N., & Harith, N. S. H. (2023). Relationship of Rainfall Intensity with Slope Stability. Civil Engineering Journal, 9(Special Issue), 75–82. doi:10.28991/CEJ-SP2023-09-06.
[31] Malla, B., & Dahal, B. K. (2021). Effect of rainfall on stability of soil slope. Proceedings of 10th IOE Graduate Conference, 30 September-2 October, 2021, Kirtipur, Nepal.
[32] Barla, M., & Antolini, F. (2016). An integrated methodology for landslides’ early warning systems. Landslides, 13(2), 215–228. doi:10.1007/s10346-015-0563-8.
[33] Sassa, K., Fukuoka, H., Wang, F., Wang, G. (2007) Progress in Landslide Science. Springer, Berlin, Germany. doi:10.1007/978-3-540-70965-7.
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.![]()















