Damage Evolution and Failure Mechanism of Segmental Tunnel Lining
Downloads
The prevention and treatment of damage in segmental tunnel lining structures are critical issues in maintaining tunnel integrity. Understanding the damage evolution and failure mechanisms of these structures is essential for their effective management. This study establishes refined numerical models for shield tunnel segmental linings, incorporating critical factors such as localized weakening around hand holes, multi-interface contact behavior, and embedded reinforcement. A total strain crack model is employed to accurately simulate the nonlinear behavior of concrete. The analysis focuses on the compression-bending failure behavior of segmental joints under positive bending moments and investigates the failure mechanisms of segmental linings subjected to surcharge loading. The results show that the deformation of segmental joints under bending moments can be divided into three stages: linear elasticity, elastoplasticity, and failure. The failure mechanism involves the progressive expansion and penetration of cracks in the core pressure-bearing area, leading to increased crack width, yielding of bolts and rebars, and eventual failure. The overall instability failure of segmental tunnel linings is caused by local failures in areas of low stiffness (joints, hand holes), exhibiting progressive failure characteristics. This study presents significant originality and practical value. A refined analytical model of shield tunnel structures is developed to capture the millimeter-scale cracking characteristics of segmental concrete linings. The model enables precise analysis of the mechanical response of shield tunnels under external construction-induced loading.
Downloads
[1] La, H., Nguyen-Minh, T., & Nguyen, T. (2025). Optimized prediction of tunnel stability using advanced machine learning and an ANN-based analytical expression. Tunnelling and Underground Space Technology, 164, 106778. doi:10.1016/j.tust.2025.106778.
[2] Nilot, E. A., Fang, G., Li, Y. E., Tan, Y. Z., & Cheng, A. (2023). Real-time tunneling risk forecasting using vibrations from the working TBM. Tunnelling and Underground Space Technology, 139, 105213. doi:10.1016/j.tust.2023.105213.
[3] Feng, D.-L., Wu, H.-N., Meng, F.-Y., Yang, S.-Q., & Chen, R.-P. (2025). Investigation on structural performance of segmental linings of shield tunnels under loading–unloading-reloading condition. Tunnelling and Underground Space Technology, 157, 106331. doi:10.1016/j.tust.2024.106331.
[4] Yu, Y., & Wang, J. (2025). Crack mechanism of shield tunnel under excavation of foundation pit. AIP Advances, 15(2), 0249750. doi:10.1063/5.0249750.
[5] Hu, Z., Zhang, C., Meng, S., Du, Y., Ma, K., Wang, H., Qie, B., & Xu, S. (2025). Encapsulated anti-aging approach on rubber sealing gasket of shield tunnel segment joint: a multiscale comparative experimental study. Tunnelling and Underground Space Technology, 164, 106854. doi:10.1016/j.tust.2025.106854.
[6] Sun, Y., Yu, Y., Wang, J., & Wang, L. (2024). Interface failure of segmental tunnel lining strengthened with steel plates based on fracture mechanics. Frontiers of Structural and Civil Engineering, 18(1), 137–149. doi:10.1007/s11709-024-1019-9.
[7] Yu, T., Zhang, Y., Yan, Z., Zhu, H., & Cao, K. (2025). Methods for determining multiple hazards and response analysis of metro shield tunnels considering existing structural damage. Tunnelling and Underground Space Technology, 162, 106662. doi:10.1016/j.tust.2025.106662.
[8] Huang, W. M., Wang, J. C., Yang, Z. X., & Xu, R. Q. (2022). Analytical method for structural analysis of segmental lining interaction with nonlinear surrounding soil and its application in physical test interpretation. Tunnelling and Underground Space Technology, 127, 104601. doi:10.1016/j.tust.2022.104601.
[9] Huang, W., Zang, Y., Wang, J., Liu, C., Yang, Z., Xu, R., & Fang, H. (2025). General Solution for Longitudinal Response of Shield Tunnel Considering the Effects of Joints and Soil Shear Resistance. International Journal for Numerical and Analytical Methods in Geomechanics, 49(3), 948–960. doi:10.1002/nag.3909.
[10] Liu, Z. X., Ye, X. W., Song, K., Lu, C. R., Song, Y. J., Li, X. J., & Zhao, L. A. (2025). Monitoring-based analysis of the responses of upper structure and tunnel lining during shield tunneling with pile cutting. Tunnelling and Underground Space Technology, 158, 106427. doi:10.1016/j.tust.2025.106427.
[11] Gao, B. Y., Chen, R. P., Wu, H. N., Zhang, Y., & Meng, F. Y. (2024). Full-scale test on the mechanical behavior of longitudinal joints of NC-UHPC composite segments under compression-bending load. Tunnelling and Underground Space Technology, 153, 105993. doi:10.1016/j.tust.2024.105993.
[12] Guo, W., Feng, K., Mu, H., Li, J., Zhou, Y., & He, C. (2025). Investigation on the force transmission performance between segmental rings of super-large cross-section shield tunnels. Tunnelling and Underground Space Technology, 164, 106779. doi:10.1016/j.tust.2025.106779.
[13] Yang, S. Q., Wu, H. N., Cheng, H. Z., Feng, D. L., & Chen, R. P. (2025). A full-ring mechanical model of shield tunnels considering detailed joint configurations. Tunnelling and Underground Space Technology, 164, 106808. doi:10.1016/j.tust.2025.106808.
[14] Zhang, L., He, C., Feng, K., Guo, W. Q., Zhang, J. X., & Xiao, M. Q. (2022). Influence of Bolts on the Compression-bending Capacity of Segmental Joints of Shield Tunnels. Zhongguo Gonglu Xuebao/China Journal of Highway and Transport, 35(11), 195–203. doi:10.19721/j.cnki.1001-7372.2022.11.018.
[15] Zhang, L., Feng, K., He, C., & Xiao, M. (2021). Experimental study on failure behaviors and damage characteristics of segmental joints of shield tunnels. Tumu Gongcheng Xuebao/China Civil Engineering Journal, 54(5), 98–107.
[16] Cao, S. Y., Feng, K., Liu, X., Xiao, M. Q., & He, C. (2021). Experimental Investigation of the Shear Mechanism on Mortise and Tenon Segment Lining. Zhongguo Gonglu Xuebao/China Journal of Highway and Transport, 34(9), 273–284. doi:10.19721/j.cnki.1001-7372.2021.09.023.
[17] Zheng, G., Sun, J., Zhang, T., Zhang, X., Cheng, H., Wang, H., & Diao, Y. (2023). Mechanism and countermeasures of progressive failure in shield tunnels. Tunnelling and Underground Space Technology, 131, 104797. doi:10.1016/j.tust.2022.104797.
[18] Liu, X., Feng, K., Xiao, M. Q., He, C., & Li, C. (2022). Prototype test of a new type segment structure with distributed mortises and tenons for shield tunnel. Gongcheng Lixue/Engineering Mechanics, 39(1), 197–208. doi:10.6052/j.issn.1000-4750.2020.12.0913.
[19] Zhang, D. M., Liu, J., Li, B. J., & Zhong, Y. (2020). Shearing Behavior of Circumferential Joints with Oblique Bolts in Large Diameter Shield Tunnel. Zhongguo Gonglu Xuebao/China Journal of Highway and Transport, 33(12), 142–153. doi:10.19721/j.cnki.1001-7372.2020.12.011.
[20] Shi, C., Wang, Z., Liu, J., Lei, M., Peng, L., & Peng, Z. (2022). Study on ultimate bearing capacity of shield tunnel based on damage model of concrete. Zhongnan Daxue Xuebao (Ziran Kexue Ban)/Journal of Central South University (Science and Technology), 53(11), 4310–4325. doi:10.11817/j.issn.1672-7207.2022.11.012.
[21] Zhang, Y., Liu, T., Zhu, C., & Xiao, J. (2023). Model tests on deformation and failure characteristics of shield tunnel in soil-rock composite stratum under surface surcharge. Journal of Railway Science and Engineering, 20(11), 4277–4287. doi:10.19713/j.cnki.43-1423/u.T20222174.
[22] Ruan, H. F., Liang, R. Z., Kang, C., Li, Z. C., & Ke, Z. B. (2023). Three-dimensional elaborate numerical modelling analysis on the deformation mechanism of metro shield tunnel induced by sudden surface surcharge. Safety and Environmental Engineering, 30(1), 35–45. doi:10.13578/j.cnki.issn.1671-1556.20220162.
[23] Zhu, M., Chen, X., Xia, C., Wang, C., & Bao, X. (2024). Resilience evolution of shield tunnel structures underground surcharge. Yantu Gongcheng Xuebao/Chinese Journal of Geotechnical Engineering , 46(1), 35–44. doi:10.11779/CJGE20221258.
[24] Xie, J., Wang, J., & Huang, W. (2021). Nonlinear structural analysis on cracking behavior of shield tunnel segment under surface loading. Journal of Railway Science and Engineering, 18(1), 162–171. doi:10.19713/j.cnki.43-1423/u.T20200275.
[25] Wang, F. Y., Zhou, M. L., Zhang, D. M., Huang, H. W., & Chapman, D. (2019). Random evolution of multiple cracks and associated mechanical behaviors of segmental tunnel linings using a multiscale modeling method. Tunnelling and Underground Space Technology, 90, 220–230. doi:10.1016/j.tust.2019.05.008.
[26] Yu, H. T., Wu, Y. X., Tu, X. Bin, Zhang, X. Y., & Li, F. (2020). Multi-scale Method for Longitudinal Seismic Response Analysis of Shield Tunnels. Zhongguo Gonglu Xuebao/China Journal of Highway and Transport, 33(1), 138–144. doi:10.19721/j.cnki.1001-7372.2020.01.014.
[27] Liu, J., Shi, C., Gong, C., Lei, M., Wang, Z., Peng, Z., & Cao, C. (2022). Investigation of ultimate bearing capacity of shield tunnel based on concrete damage model. Tunnelling and Underground Space Technology, 125, 104510. doi:10.1016/j.tust.2022.104510.
[28] Sui, Y., Cheng, X., & Zhao, Z. (2023). Research on cracking failure process of concrete components using total strain crack constitutive model. Jianzhu Jiegou Xuebao/Journal of Building Structures, 44(7), 216–224. doi:10.14006/j.jzjgxb.2022.0020.
[29] Fib (International Federation for Structural Concrete). (2013). fib Model Code for Concrete Structures 2010. Ernst & Sohn, Berlin, Germany.
[30] Yu, Y., Wang, J., & Cheng, C. (2025). Fracture and resilience evolution of double-layer lining structure of shield tunnel. Engineering Computations (Swansea, Wales), 42(5), 1771–1790. doi:10.1108/EC-12-2024-1068.
[31] Sun, L. W. (2016). Shield tunnel structure behavior under external load. PhD Thesis, Zhejiang University, Hangzhou, China.
[32] He, C., Liu, C. K., Wang, S. M., Zhang, J. B., Lu, D. Y., & Ma, G. Y. (2018). Influence of Crack Number on Mechanical Properties of Shield Tunnel Segment Structure. Zhongguo Gonglu Xuebao/China Journal of Highway and Transport, 31(10), 210–219.
[33] China GB50011. (2010). Standard for Urban Rail Transit Project Construction. Ministry of Housing and Urban-Rural Development of the People’s Republic of Chin, Beijing, China.
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.