Factors Influencing Performance, Durability, and Environmental Impact of Hydraulic Structures Using Waste Composite
Downloads
This research explores the crucial elements influencing the impact of hydraulic structures constructed using waste-based composites, emphasizing sustainable material integration in infrastructure. A conceptual model comprising five constructs—Design and Structural Performance, Durability, Environmental Impact, Material Characteristics, and Waste Composites—was established and analyzed utilizing Partial Least Squares Structural Equation Modeling (PLS-SEM). Data was combined from 260 construction professionals across the key construction industry. G*Power analysis confirmed the lowest required sample size of 150; the larger sample enhanced statistical robustness. All constructs demonstrated strong reliability, convergent validity, and discriminant validity, with significant path relationships supporting the proposed hypotheses. Material Characteristics (β = 0.568) and Environmental Impact (β = 0.353) emerged as the most influential predictors of hydraulic structure performance. Empirical correlation, cross-loadings, HTMT, and VIF analyses confirmed model stability and construct independence. The results provide precious information for engineers, construction managers, and policymakers aiming to optimize structural integrity and environmental sustainability through the adoption of recycled composite materials. This research contributes to theoretical advancements in sustainable construction and provides practical implications for material selection, policy formulation, and infrastructure design. The study recommends future research on real-time performance monitoring, expanded geographic validation, and inclusion of cost-efficiency and technological integration variables.
Downloads
[1] Cui, L., Weng, S., Nadeem, A. M., Rafique, M. Z., & Shahzad, U. (2022). Exploring the role of renewable energy, urbanization and structural change for environmental sustainability: Comparative analysis for practical implications. Renewable Energy, 184, 215-224. doi:10.1016/j.renene.2021.11.075.
[2] Kapucu, N., Ge, Y., Rott, E., & Isgandar, H. (2024). Urban resilience: Multidimensional perspectives, challenges and prospects for future research. Urban Governance, 1-18. doi:10.1016/j.ugj.2024.09.003.
[3] Akhnoukh, A. K. (2020). Advantages of Contour Crafting in Construction Applications. Recent Patents on Engineering, 15(3), 294–300. doi:10.2174/1872212114666200218111631.
[4] Kenkel, B., & Uitermarkt, D. (2017). E80/H20-Rated structural culvert point repair for railroads and highways. NASTT’s No-Dig Show and ISTT’s 35th International No-Dig, 9-13 April, Washington, United States.
[5] Fahad, M., Mohamad, H. M., Sulaiman, M. F., & Suro, S. M. (2024). The Ramifications of Poor Communication in Construction Projects: Unraveling Complex Litigation and Arbitration. Journal of Human, Earth, and Future, 5(4), 704-719. doi:10.28991/HEF-2024-05-04-012.
[6] Liu, D., Chen, J., Hu, D., & Zhang, Z. (2019). Dynamic BIM-augmented UAV safety inspection for water diversion project. Computers in Industry, 108, 163–177. doi:10.1016/j.compind.2019.03.004.
[7] Legge, K. R. (2016). Composite Filters of Geotextiles and Natural Materials for Critical Applications in Dam Engineering. Geosynthetics, Forging a Path to Bona Fide Engineering Materials, 326–331. doi:10.1061/9780784480182.029.
[8] Zakka, W. P., Abdul Shukor Lim, N. H., & Chau Khun, M. (2021). A scientometric review of geopolymer concrete. Journal of Cleaner Production, 280, 124353. doi:10.1016/j.jclepro.2020.124353.
[9] Szolomicki, J., & Golasz-Szolomicka, H. (2019). Technological Advances and Trends in Modern High-Rise Buildings. Buildings, 9(9), 193. doi:10.3390/buildings9090193.
[10] Shahrubudin, N., Koshy, P., Alipal, J., Kadir, M. H. A., & Lee, T. C. (2020). Challenges of 3D printing technology for manufacturing biomedical products: A case study of Malaysian manufacturing firms. Heliyon, 6(4), e03734. doi:10.1016/j.heliyon.2020.e03734.
[11] Su, J. feng, Gao, J., Huang, T. lin, & Zhang, Y. ming. (2020). Simultaneous nitrate, nickel ions and phosphorus removal in a bioreactor containing a novel composite material. Bioresource Technology, 305. doi:10.1016/j.biortech.2020.123081.
[12] Ortega, A. D., Rodríguez, J. P., & Bharati, L. (2023). Building flood-resilient cities by promoting SUDS adoption: A multi-sector analysis of barriers and benefits in Bogotá, Colombia. International Journal of Disaster Risk Reduction, 88. doi:10.1016/j.ijdrr.2023.103621.
[13] Davies, T., Pierce, W., & Conner, N. (2024). Affecting the Grand Trifecta—Integration of Condition Assessment Program to Launch Multi-Billion Dollar Capital Improvement Program Updates. Pipelines 2024, 57–64. doi:10.1061/9780784485583.007.
[14] Marathe, S., Nieświec, M., & Gronostajska, B. (2024). Alkali-Activated Permeable Concretes with Agro-Industrial Wastes for a Sustainable Built Environment. Materials, 18(1), 87. doi:10.3390/ma18010087.
[15] Ijaz, N., Dai, F., Meng, L., Rehman, Z. ur, & Zhang, H. (2020). Integrating lignosulphonate and hydrated lime for the amelioration of expansive soil: A sustainable waste solution. Journal of Cleaner Production, 254. doi:10.1016/j.jclepro.2020.119985.
[16] Niu, J., Li, Z., Yang, H., Ye, C., Chen, C., Li, D., Xu, J., & Fan, L. (2016). A water resistant solid-phase microextraction fiber with high selectivity prepared by a metal organic framework with perfluorinated pores. Journal of Chromatography A, 1441, 16–23. doi:10.1016/j.chroma.2016.02.076.
[17] Hair, J. F., Risher, J. J., Sarstedt, M., & Ringle, C. M. (2019). When to use and how to report the results of PLS-SEM. European Business Review, 31(1), 2–24. doi:10.1108/EBR-11-2018-0203.
[18] Sarstedt, M., Ringle, C. M., & Hair, J. F. (2022). Partial Least Squares Structural Equation Modeling. Handbook of Market Research. Springer, Cham, Switzerland. doi:10.1007/978-3-319-57413-4_15.
[19] Weber-Lewerenz, B. (2021). Corporate digital responsibility (CDR) in construction engineering—ethical guidelines for the application of digital transformation and artificial intelligence (AI) in user practice. SN Applied Sciences, 3, 1-25. doi:10.1007/s42452-021-04776-1.
[20] Aiman, M. S., Othman, I., Waqar, A., Sor, N. H., Isleem, H. F., Najm, H. M., Benjeddou, O., & Sabri, M. M. S. (2024). Geopolymers: Enhancing Environmental Safety and Sustainability in Construction. Civil Engineering Journal (Iran), 10(10), 3350–3369. doi:10.28991/CEJ-2024-010-10-015.
[21] Ghani, M. U., Sun, B., Houda, M., Zeng, S., khan, M. B., El-Din, H. M. S., Waqar, A., & Benjeddou, O. (2024). Mechanical and environmental evaluation of PET plastic-graphene nano platelets concrete mixes for sustainable construction. Results in Engineering, 21. doi:10.1016/j.rineng.2024.101825.
[22] Kong, Y., Zhang, X., Zhang, L., Xu, J., Ji, W., Pan, L., Lu, R., Zuo, J., Ma, X., & Ma, S. (2024). Investigation on utilization and microstructure of fine iron tailing slag in road subbase construction. Construction and Building Materials, 447. doi:10.1016/j.conbuildmat.2024.138019.
[23] H., Zou, S., Liu, T., Wang, S., Zou, J., Zhang, X., Liu, L., Bai, C., & Zhang, G. (2022). Research on a Composite Biomass Insulation Material with Geopolymers as Binders and Forestry Waste as Fillers. Journal of Thermal Science, 31(2), 590–605. doi:10.1007/s11630-020-1387-y.
[24] Jones, J., Chang, N. Bin, & Wanielista, M. P. (2015). Reliability analysis of nutrient removal from stormwater runoff with green sorption media under varying influent conditions. Science of the Total Environment, 502, 434–447. doi:10.1016/j.scitotenv.2014.09.016.
[25] Kadja, G. T. M., Fabiani, V. A., Aziz, M. H., Fajar, A. T. N., Prasetyo, A., Suendo, V., Ng, E. P., & Mukti, R. R. (2017). The effect of structural properties of natural silica precursors in the mesoporogen-free synthesis of hierarchical ZSM-5 below 100 °C. Advanced Powder Technology, 28(2), 443–452. doi:10.1016/j.apt.2016.10.017.
[26] Wang, S., Zhang, J., Ma, K., Zhang, W., Gao, Y., Yu, P., ... & Guo, K. (2024). Design and optimization of novel vortex microreactors for ultrasound-assisted synthesis of high-performance Fe3O4 nanoparticles. Chemical Engineering Journal, 501, 157672. doi:10.1016/j.cej.2024.157672.
[27] Zoqi, M. J., Doosti, M. R., & Izadi, S. (2024). Degradation of direct red 23 dye in a plug flow reactor with adjustable angle baffles using nano-Fe3O4: modelling and optimisation. Environmental Technology (United Kingdom), 45(27), 5878–5898. doi:10.1080/09593330.2024.2310525.
[28] Pytharouli, S. I., Lunn, R. J., Shipton, Z. K., Kirkpatrick, J. D., & Do Nascimento, A. F. (2011). Microseismicity illuminates open fractures in the shallow crust. Geophysical Research Letters, 38(2), 1-5. doi:10.1029/2010GL045875.
[29] Žvironaitė, J., Pundienė, I., Gaidučis, S., & Kizinievič, V. (2012). Effect of different pozzolana on hardening process and properties of hydraulic binder based on natural anhydrite. Journal of Civil Engineering and Management, 18(4), 530–536. doi:10.3846/13923730.2012.702126.
[30] Hui-ming, T. A. N., & Han-long, L. I. U. (2008). Theoretical analysis of combined action of cushion and embankment fills in pile-supported embankment. Rock and Soil Mechanics, 29(8), 2271-2276.
[31] Trautvain, A. I., & Yadykina, V. V. (2024). Reducing the environmental burden during the reconstruction of highways by extending their life cycle. BIO Web of Conferences, 103, 00040. doi:10.1051/bioconf/202410300040.
[32] Devkota, P., & Park, J. (2019). Analytical model for air flow into cracked concrete structures for super-speed tube transport systems. Infrastructures, 4(4), 76. doi:10.3390/infrastructures4040076.
[33] Moroni, M., La Marca, F., Cherubini, L., & Cenedese, A. (2013). Recovering plastics via the hydraulic separator multidune: Flow analysis and efficiency tests. International Journal of Environmental Research, 7(1), 113–130.
[34] Melchior, S., Sokollek, V., Berger, K., Vielhaber, B., & Steinert, B. (2010). Results from 18 Years of In Situ Performance Testing of Landfill Cover Systems in Germany. Journal of Environmental Engineering, 136(8), 815–823. doi:10.1061/(asce)ee.1943-7870.0000200.
[35] Acikel, A. S., Singh, R. M., Bouazza, A., Gates, W. P., & Rowe, R. K. (2011). Water retention behaviour of unsaturated geosynthetic clay liners. Proceedings of 13th international conference of the International Association for Computer Methods and Advances in Geomechanics, 9-11 May, 2011, Melbourne, Australia.
[36] Matamoros, V., García, J., & Bayona, J. M. (2005). Behavior of selected pharmaceuticals in subsurface flow constructed wetlands: A pilot-scale study. Environmental Science and Technology, 39(14), 5449–5454. doi:10.1021/es050022r.
[37] Beyer, C., Konrad, W., Rügner, H., Bauer, S., Liedl, R., & Grathwohl, P. (2009). Model-based prediction of long-term leaching of contaminants from secondary materials in road constructions and noise protection dams. Waste Management, 29(2), 839–850. doi:10.1016/j.wasman.2008.06.025.
[38] Garbarczyk, J., Paukszta, D., & Borysiak, S. (2004). Composites of polypropylene with waste flax and hemp fibres. REWAS’04 - Global Symposium on Recycling, Waste Treatment and Clean Technology, 26-29 September, 2004, Madrid, Spain.
[39] Benazzouk, A., Douzane, O., Langlet, T., Mezreb, K., Roucoult, J. M., & Quéneudec, M. (2007). Physico-mechanical properties and water absorption of cement composite containing shredded rubber wastes. Cement and Concrete Composites, 29(10), 732–740. doi:10.1016/j.cemconcomp.2007.07.001.
[40] Balzannikov, M. I., & Mikhasek, A. A. (2014). The Use of Modified Composite Materials in Building Hydraulic Engineering Structures. Procedia Engineering, 91, 183–187. doi:10.1016/j.proeng.2014.12.043.
[41] Scalia, J., & Benson, C. H. (2011). Hydraulic Conductivity of Geosynthetic Clay Liners Exhumed from Landfill Final Covers with Composite Barriers. Journal of Geotechnical and Geoenvironmental Engineering, 137(1), 1–13. doi:10.1061/(asce)gt.1943-5606.0000407.
[42] Mitchell, J. K. (2009). Geotechnical Surprises—Or Are They? Journal of Geotechnical and Geoenvironmental Engineering, 135(8), 998–1010. doi:10.1061/(asce)gt.1943-5606.0000040.
[43] Jeon, H. Y., Kim, S. H., Chung, Y. I., Park, Y. M., & Chung, C. G. (2004). Analysis of the drainage performance of geotextile composites under confined loads. Polymer Testing, 23(2), 239–244. doi:10.1016/S0142-9418(03)00100-4.
[44] Taranu, G., Lungu, I., Taranu, N., & Budescu, M. (2013). Mechanical Characteristics of Glass Fibre Reinforced Composites with Cement and Recycled Anhydrite Matrix. Revista Romana de Materiale, 43(2), 139. (In Romanian).
[45] Spadaro, P. A., Templeton, D. W., Hartman, G. L., & Wang, T. S. (1993). Predicting Water Quality during Dredging and Disposal of Contaminated Sediments from the Sitcum Waterway in Commencement Bay, Washington, USA. Water Science and Technology, 28(8–9), 237–254. doi:10.2166/wst.1993.0623.
[46] Phillips, A. L., & Wert, K. L. (2000). Loop Heat pipe Anti Icing System Development Program Summary. SAE Technical Paper Series, 1-9. doi:10.4271/2000-01-2493.
[47] Hagen, L. J., Schroeder, P. R., & Thai, L. (2009). Estimated particulate emissions by wind erosion from the Indiana Harbor confined disposal facility. Practice Periodical of Hazardous, Toxic, and Radioactive Waste Management, 13(1), 20–28. doi:10.1061/(ASCE)1090-025X(2009)13:1(20).
[48] Chou, S., Wang, R., Shi, L., She, Q., Tang, C., & Fane, A. G. (2012). Thin-film composite hollow fiber membranes for pressure retarded osmosis (PRO) process with high power density. Journal of Membrane Science, 389, 25–33. doi:10.1016/j.memsci.2011.10.002.
[49] Allan, M. L., & Kukacka, L. E. (1995). Permeability of microcracked fibre-reinforced containment barriers. Waste Management, 15(2), 171–177. doi:10.1016/0956-053X(95)00011-N.
[50] Chatterjee, S., Chattopadhyay, B., & Mukhopadhyay, S. K. (2010). Monitoring waste metal pollution at Ganga Estuary via the East Calcutta Wetland areas. Environmental Monitoring and Assessment, 170(1–4), 23–31. doi:10.1007/s10661-009-1211-3.
[51] Wallenberger, F.T. (2010). Commercial and Experimental Glass Fibers. Fiberglass and Glass Technology, Springer, Boston, United States. doi:10.1007/978-1-4419-0736-3_1.
[52] Aydinli, B., & Caglar, A. (2010). The comparison of hazelnut shell co-pyrolysis with polyethylene oxide and previous ultra-high molecular weight polyethylene. Journal of Analytical and Applied Pyrolysis, 87(2), 263–268. doi:10.1016/j.jaap.2010.01.006.
[53] Souza, A. C., Pereira, M. F., & Mossin, L. C. (2021). Thermal and mechanical characterization of blindex glass powder residue® for the production of ecological coating. Journal of Materials Research and Technology, 12, 1794–1803. doi:10.1016/j.jmrt.2021.03.099.
[54] Rodier, L., & Savastano Jr, H. (2018). Use of glass powder residue for the elaboration of eco-efficient cementitious materials. Journal of Cleaner Production, 184, 333-341. doi:10.1016/j.jclepro.2018.02.269.
[55] Rehman, Z. ur, Ijaz, N., Ye, W., & Ijaz, Z. (2023). Design optimization and statistical modeling of recycled waste-based additive for a variety of construction scenarios on heaving ground. Environmental Science and Pollution Research, 30(14), 39783–39802. doi:10.1007/s11356-022-24853-1.
[56] Yang, L., Jin, X., Hu, Y., Zhang, M., Wang, H., Jia, Q., & Yang, Y. (2024). Technical structure and influencing factors of nitrogen and phosphorus removal in constructed wetlands. Water Science and Technology, 89(2), 271–289. doi:10.2166/wst.2023.414.
[57] Cui, H., Feng, Y., Lu, W., Wang, L., Li, H., Teng, Y., Bai, Y., Qu, K., Song, Y., & Cui, Z. (2024). Effect of hydraulic retention time on denitrification performance and microbial communities of solid-phase denitrifying reactors using polycaprolactone/corncob composite. Marine Pollution Bulletin, 205. doi:10.1016/j.marpolbul.2024.116559.
[58] Mehraein, M., Torabi, M., Sangsefidi, Y., & MacVicar, B. (2020). Numerical simulation of free flow through side orifice in a circular open-channel using response surface method. Flow Measurement and Instrumentation, 76. doi:10.1016/j.flowmeasinst.2020.101825.
[59] Powęzka, A., Ogrodnik, P., Szulej, J., & Pecio, M. (2021). Glass cullet as additive to new sustainable composites based on alumina binder. Energies, 14(12), 3423. doi:10.3390/en14123423.
[60] Yao, J., Li, W., Ou, D., Lei, L., Asif, M., & Liu, Y. (2021). Performance and granular characteristics of salt-tolerant aerobic granular reactors response to multiple hypersaline wastewaters. Chemosphere, 265. doi:10.1016/j.chemosphere.2020.129170.
[61] Ijaz, N., Rehman, Z. ur, & Ijaz, Z. (2022). Recycling of paper/wood industry waste for hydromechanical stability of expansive soils: A novel approach. Journal of Cleaner Production, 348. doi:10.1016/j.jclepro.2022.131345.
[62] Zoveidavianpoor, M., & Gharibi, A. (2016). Characterization of agro-waste resources for potential use as proppant in hydraulic fracturing. Journal of Natural Gas Science and Engineering, 36, 679–691. doi:10.1016/j.jngse.2016.10.045.
[63] Li, X., Sun, R., Wang, D., Fang, K., Wang, J., Duan, K., & Yang, B. (2024). Insights into the acid-modification on magnesium slag and its effects on cement-magnesium slag composite cementitious material. Construction and Building Materials, 449. doi:10.1016/j.conbuildmat.2024.138445.
[64] Slavcheva, G. S., Baidzhanov, D. O., Khan, M. A., Shvedova, M. A., & Imanov, Y. K. (2019). Clinkerless slag-silica binder: Hydration process and hardening kinetics. Magazine of Civil Engineering, 92(8), 96–105. doi:10.18720/MCE.92.8.
[65] Mubarak, M. F., Zayed, M. A., Nafady, A., & Shahawy, A. E. L. (2021). Fabrication of Hybrid Materials Based on Waste Polyethylene/Porous Activated Metakaolinite Nanocomposite as an Efficient Membrane for Heavy Metal Desalination Processes. Adsorption Science and Technology, 2021. doi:10.1155/2021/6695398.
[66] Abdulhassan, N. A., Hilo, A. N., Abid, S. R., Al-Ghasham, T. S., & Cheyad, S. M. (2023). Underwater surface abrasion of conventional and geopolymer concrete using the ASTM C1138 approach. Journal of Materials Research and Technology, 25, 2556–2569. doi:10.1016/j.jmrt.2023.06.127.
[67] Hanif, A., Lu, Z., Sun, M., Parthasarathy, P., & Li, Z. (2017). Green lightweight ferrocement incorporating fly ash cenosphere based fibrous mortar matrix. Journal of Cleaner Production, 159, 326–335. doi:10.1016/j.jclepro.2017.05.079.
[68] Estokova, A., Figmig, R., & Galanova, N. (2022). Cement Composites with Waste Incorporation Under Acid Rain Attack. Detritus, 18, 24–34. doi:10.31025/2611-4135/2022.15167.
[69] Sulaiman, M., Rabbani, F. A., Iqbal, T., Riaz, F., Raashid, M., Ullah, N., Yasin, S., Fouad, Y., Abbas, M. M., & Kalam, M. A. (2023). Development and Characterization of Polymeric Composites Reinforced with Lignocellulosic Wastes for Packaging Applications. Sustainability (Switzerland), 15(13). doi:10.3390/su151310161.
[70] Chen, Y., Glaus, M. A., Van Loon, L. R., & Mäder, U. (2018). Transport behaviour of low molecular weight organic compounds in multi-mineral clay systems. A comparison between measured and predicted values. Applied Clay Science, 165, 247–256. doi:10.1016/j.clay.2018.08.004.
[71] Kowalik, T., & Ubysz, A. (2021). Effect of the addition of waste basalt fibers on concrete shrinkage. E3S Web of Conferences, 263, 01024. doi:10.1051/e3sconf/202126301024.
[72] Walker, S. R. J., & Thies, P. R. (2022). A life cycle assessment comparison of materials for a tidal stream turbine blade. Applied Energy, 309. doi:10.1016/j.apenergy.2021.118353.
[73] Hu, Y., Wang, Z., Zong, S., & Zhu, D. (2025). The effect of nano-SiO2 on the mechanical properties and degradation of steel fiber-reinforced geopolymer composite material under freeze-thaw cycles. Construction and Building Materials, 475. doi:10.1016/j.conbuildmat.2025.141198.
[74] Zielińska-Jurek, A., Bielan, Z., Wysocka, I., Strychalska, J., Janczarek, M., & Klimczuk, T. (2017). Magnetic semiconductor photocatalysts for the degradation of recalcitrant chemicals from flow back water. Journal of Environmental Management, 195, 157–165. doi:10.1016/j.jenvman.2016.06.056.
[75] Singh, M., Saini, B., & Chalak, H. D. (2022). Assessment of chemical exposures on ECC containing stone slurry powder. Journal of Engineering Research (Kuwait), 10(2 B), 23–39. doi:10.36909/jer.10361.
[76] Meng, J., Lin, X., Zhou, J., Zhang, R., Chen, Y., Long, X., Shang, R., & Luo, X. (2019). Preparation of tannin-immobilized gelatin/PVA nanofiber band for extraction of uranium (VI) from simulated seawater. Ecotoxicology and Environmental Safety, 170, 9–17. doi:10.1016/j.ecoenv.2018.11.089.
[77] Flechsig, C., Anslinger, F., & Lasch, R. (2022). Robotic Process Automation in purchasing and supply management: A multiple case study on potentials, barriers, and implementation. Journal of Purchasing and Supply Management, 28(1), 100718. doi:10.1016/j.pursup.2021.100718.
[78] Griffith, A., Stephenson, P., & Bhutto, K. (2005). An integrated management system for construction quality, safety and environment: a framework for IMS. International Journal of Construction Management, 5(2), 51-60. doi:10.1080/15623599.2005.10773074.
[79] Oke, A. E., Kineber, A. F., Alsolami, B., & Kingsley, C. (2023). Adoption of cloud computing tools for sustainable construction: a structural equation modelling approach. Journal of Facilities Management, 21(3), 334–351. doi:10.1108/JFM-09-2021-0095.
[80] Sarstedt, M., Ringle, C. M., Smith, D., Reams, R., & Hair, J. F. (2014). Partial least squares structural equation modeling (PLS-SEM): A useful tool for family business researchers. Journal of Family Business Strategy, 5(1), 105–115. doi:10.1016/j.jfbs.2014.01.002.
[81] Botter, C. H. (1982). Project management: A systems approach to planning, scheduling and controlling. European Journal of Operational Research, 10(2), 211. doi:10.1016/0377-2217(82)90164-3.
[82] Hameed, M. A., & Arachchilage, N. A. G. (2018). Understanding the influence of Individual’s Self-efficacy for Information Systems Security Innovation Adoption: A Systematic Literature Review. arXiv:1809.10890, 1-19.
[83] Fei, W. A. N. G. (2014). Research on design difficulties and project argumentation about the yellow river tunnel of Lanzhou metro. Journal of Railway Engineering Society, 31(8), 62-67.
[84] Cochran, W. G. (1977). Sampling techniques. John Wiley & Sons, Hoboken, United States.
[85] Sajjad, M., Hu, A., Waqar, A., Falqi, I. I., Alsulamy, S. H., Bageis, A. S., & Alshehri, A. M. (2023). Evaluation of the Success of Industry 4.0 Digitalization Practices for Sustainable Construction Management: Chinese Construction Industry. Buildings, 13(7), 1668. doi:10.3390/buildings13071668.
[86] Oke, A. E., Farouk Kineber, A., Abdel-Tawab, M., Abubakar, A. S., Albukhari, I., & Kingsley, C. (2023). Barriers to the implementation of cloud computing for sustainable construction in a developing economy. International Journal of Building Pathology and Adaptation, 41(5), 988–1013. doi:10.1108/IJBPA-07-2021-0098.
[87] Alsehaimi, A., Waqar, A., Alrasheed, K. A., Bageis, A. S., Almujibah, H., Benjeddou, O., & Khan, A. M. (2024). Building a sustainable future: BIM’s role in construction, logistics, and supply chain management. Ain Shams Engineering Journal, 103103. doi:10.1016/j.asej.2024.103103.
[88] Aitbayeva, D., & Hossain, M. A. (2020). Building Information Model (BIM) Implementation in Perspective of Kazakhstan: Opportunities and Barriers. Journal of Engineering Research and Reports, 13–24. doi:10.9734/jerr/2020/v14i117113.
[89] Sánchez, M. R., Palos-Sánchez, P. R., & Velicia-Martin, F. (2021). Eco-friendly performance as a determining factor of the Adoption of Virtual Reality Applications in National Parks. Science of the Total Environment, 798. doi:10.1016/j.scitotenv.2021.148990.
[90] Sajjad, M., Hu, A., Alshehri, A. M., Waqar, A., Khan, A. M., Bageis, A. S., Elaraki, Y. G., Shohan, A. A. A., & Benjeddou, O. (2024). BIM-driven energy simulation and optimization for net-zero tall buildings: sustainable construction management. Frontiers in Built Environment, 10(February), 1–16. doi:10.3389/fbuil.2024.1296817.
[91] Olawumi, T. O., & Chan, D. W. M. (2019). Critical success factors for implementing building information modeling and sustainability practices in construction projects: A Delphi survey. Sustainable Development, 27(4), 587–602. doi:10.1002/sd.1925.
[92] Monozam, N. H., Monazam, H. H., Hosseini, M. R., & Zaeri, F. (2016). Barriers To Adopting Building Information Modelling (Bim) Within South Australian Small and Medium Sized Enterprises. Project Management Development-Practice & Perspectives, Fifth International Scientific Conference on Project Management in the Baltic Countries, 14-15 April, 2016, Riga, Latvia.
[93] Kanwal, N., & Isha, A. S. N. (2022). The Moderating Effects of Social Media Activities on the Relationship Between Effort-Reward Imbalance and Health and Wellbeing: A Case Study of the Oil and Gas Industry in Malaysia. Frontiers in Public Health, 10. doi:10.3389/fpubh.2022.805733.
[94] Hair, J. F., Ringle, C. M., & Sarstedt, M. (2013). Review Briefs: June 2013. Long Range Planning, 46(3), 287–293. doi:10.1016/j.lrp.2012.09.004.
[95] Hair, J.F., Black, W.C., Babin, B.J. and Anderson, R.E. (2010). Multivariate Data Analysis (7th Ed.). Pearson, New York, United States.
[96] van Konijnenburg, E. M. M. H., Gigengack, M., Teeuw, A. H., Sieswerda‐Hoogendoorn, T., Brilleslijper‐Kater, S. N., Flapper, B. C., ... & Barlow, D. H. (2018). A mixed methods study on evaluations of Virginia’s STEM-focused governor’s schools. Dissertation Abstracts International: Section B: The Sciences and Engineering, Virginia Polytechnic Institute and State University, Viginia, United States.
[97] Manzoor, B., Othman, I., Gardezi, S. S. S., & Harirchian, E. (2021). Strategies for adopting building information modeling (Bim) in sustainable building projects—A case of Malaysia. Buildings, 11(6), 249. doi:10.3390/buildings11060249.
[98] Soo, A., Gao, L., & Shon, H. K. (2024). Machine learning framework for wastewater circular economy — Towards smarter nutrient recoveries. Desalination, 592. doi:10.1016/j.desal.2024.118092.
[99] Saleeb, N., Marzouk, M., & Atteya, U. (2018). A comparative suitability study between classification systems for BIM in heritage. International Journal of Sustainable Development and Planning, 13(1), 130–138. doi:10.2495/SDP-V13-N1-130-138.
[100] Lesovik, V., Volodchenko, A., Fediuk, R., & Mugahed Amran, Y. H. (2021). Improving the Hardened Properties of Nonautoclaved Silicate Materials Using Nanodispersed Mine Waste. Journal of Materials in Civil Engineering, 33(9). doi:10.1061/(asce)mt.1943-5533.0003839.
[101] Roy, D., Dubey, A., & Lohana, S. (2024). A Study to Review Global Regulations Regarding Mitigation of Operational Risk Associated with Crypto-Assets. Recent Trends in Engineering and Science for Resource Optimization and Sustainable Development, 259–264. doi:10.1201/9781003596721-60.
[102] Rahman, M. M., & Maniruzzaman, M. (2023). A new route of production of the meso-porous chitosan with well-organized honeycomb surface microstructure from shrimp waste without destroying the original structure of native shells: Extraction, modification and characterization study. Results in Engineering, 19. doi:10.1016/j.rineng.2023.101362.
[103] Voronkova, V., Nikitenko, V., Metelenko, N., Silina, I., Popova, A., Slyusar, M., Burashnikova, O., & Afonov, R. (2024). Synergy of digital technologies and green development and their impact on achieving a sustainable environment in the conditions of instability. Transformations of National Economies under Conditions of Instability, 73–111, Tallinn, Estonia. doi:10.21303/978-9916-9850-6-9.ch3.
[104] Ekka, B., Mierina, I., Zarina, R., & Mezule, L. (2024). Efficient removal of lipophilic compounds from sewage sludge: Comparative evaluation of solvent extraction techniques. Heliyon, 10(23), e40749. doi:10.1016/j.heliyon.2024.e40749.
[105] Ascione, F., Maselli, G., & Nesticò, A. (2024). Sustainable materials selection in industrial construction: A life-cycle based approach to compare the economic and structural performances of glass fibre reinforced polymer (GFRP) and steel. Journal of Cleaner Production, 475. doi:10.1016/j.jclepro.2024.143641.
[106] Lee, J. D., Park, J. B., & Kim, T. Y. (2002). Estimation of the shadow prices of pollutants with production/environment inefficiency taken into account: A nonparametric directional distance function approach. Journal of Environmental Management, 64(4), 365–375. doi:10.1006/jema.2001.0480.
[107] Pereira, L., Ferreira, S., & Santos, J. (2020). The main causes of risk in residential real estate projects. Journal of General Management, 45(3), 152–162. doi:10.1177/0306307019890095.
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.