Shrinkage Characteristics and Abrasion Resistance of Porcelain Waste-Based Geopolymers Mortar Under Chemical Exposure
Downloads
This study investigated microstructural analyses, dry shrinkage, and autogenous shrinkage of mortar using defective sanitary ware porcelain as a low-calcium material with sodium hydroxide (NaOH) and sodium silicate (Na₂SiO₃). Additionally, the abrasive resistance of concrete was examined under chemical corrosion environments of 5%, 10%, 15%, and 20% H₂SO₄, HCl, and MgSO₄. The microstructural analyses using XRF, DTA-TGA, and SEM were conducted at 28 days. For specimen preparation, mortar specimens were oven-cured for 2 h at 105°C, while concrete specimens were oven-cured for 24 h and air-cured for 28 days before undergoing chemical immersion at 3, 7, 14, 21, 28, 60, and 90 days. NaOH concentrations of 8, 10, 12, and 14 Molar (M) were used. The results indicated that shrinkage in porcelain-based geopolymer mortars increased with higher NaOH concentration, and increasing the initial curing temperature led to increased mortar shrinkage. The autogenous shrinkage of 14M alkali-activated porcelain mortar was found to be higher than that of 8M, 10M, and 12M NaOH concentration mortars. Additionally, increasing the NaOH concentration reduced the abrasive resistance of the concrete. The maximum weight loss values were 8.21%, 6.91%, and 0.96% for 20% H₂SO₄ (90 days immersion), HCl (90 days immersion), and 20% MgSO₄ (90 days immersion), respectively. The microstructural findings confirmed the formation of gel-intact phases, highlighting the importance of curing time and NaOH concentration in low-calcium binder material. This study emphasized the critical role of curing temperature in optimizing the mechanical and durability properties of defective sanitary ware porcelain-based geopolymer.
Downloads
[1] Cuviella-Suárez, C., Colmenar-Santos, A., Borge-Diez, D., & Rosales-Asensio, E. (2019). Sanitary-ware factories: Heat recovery strategies to optimize energy and water consumption. Energy Procedia, 157, 719–736. doi:10.1016/j.egypro.2018.11.238.
[2] Fernandes, M., Sousa, A., & Dias, A. (2004). Environmental impact and emissions trade ceramic industry-A case study. Portuguese Association of Ceramic Industry APICER, Coimbra, Portugal.
[3] Cristiano, M. (2014). The use of ceramic waste aggregates in concrete: a literary review. Concrete 2014 Progetto E Tecnologia Per II Costruito, Termoli, Italy. doi:10.13140/2.1.2349.1846.
[4] García-Ten, F. J., Quereda Vázquez, M. F., Gil Albalat, C., Chumillas Villalba, D., Zaera, V., & Segura Mestre, M. C. (2016). Life Ceram. Zero waste in ceramic tile manufacture. Key Engineering Materials, 663, 23–33. doi:10.4028/www.scientific.net/KEM.663.23.
[5] Chindaprasirt, P., & Rattanasak, U. (2023). Calcium wastes as an additive for a low calcium fly ash geopolymer. Scientific Reports, 13(1), 16351. doi:10.1038/s41598-023-43586-w.
[6] Miller, S. A., Habert, G., Myers, R. J., & Harvey, J. T. (2021). Achieving net zero greenhouse gas emissions in the cement industry via value chain mitigation strategies. One Earth, 4(10), 1398–1411. doi:10.1016/j.oneear.2021.09.011.
[7] Mohaddes Khorassani, S., Siligardi, C., Mugoni, C., Pini, M., Cappucci, G. M., & Ferrari, A. M. (2020). Life cycle assessment of a ceramic glaze containing copper slags and its application on ceramic tile. International Journal of Applied Ceramic Technology, 17(1), 42–54. doi:10.1111/ijac.13382.
[8] Wongpattanawut, W., & Ayudhya, B. I. N. (2023). Effect of Curing Temperature on Mechanical Properties of Sanitary Ware Porcelain based Geopolymer Mortar. Civil Engineering Journal (Iran), 9(8), 1808–1827. doi:10.28991/CEJ-2023-09-08-01.
[9] Zuda, L., Bayer, P., Rovnaník, P., & Černý, R. (2008). Mechanical and hydric properties of alkali-activated aluminosilicate composite with electrical porcelain aggregates. Cement and Concrete Composites, 30(4), 266–273. doi:10.1016/j.cemconcomp.2007.11.003.
[10] Jang, H. S., & So, S. Y. (2015). The properties of cement-based mortar using different particle size of grinding waste insulator powder. Journal of Building Engineering, 3, 48–57. doi:10.1016/j.jobe.2015.06.007.
[11] Guerra, I., Vivar, I., Llamas, B., Juan, A., & Moran, J. (2009). Eco-efficient concretes: The effects of using recycled ceramic material from sanitary installations on the mechanical properties of concrete. Waste Management, 29(2), 643–646. doi:10.1016/j.wasman.2008.06.018.
[12] Wongpattanawut, W., & Ayudhya, B. I. N. (2024). Optimizing Alkali-Concentration on Fresh and Durability Properties of Defected Sanitary Ware Porcelain based Geopolymer Concrete. Civil Engineering Journal (Iran), 10(4), 1069–1092. doi:10.28991/CEJ-2024-010-04-05.
[13] Ramos, G. A., Pelisser, F., Paul Gleize, P. J., Bernardin, A. M., & Michel, M. D. (2018). Effect of porcelain tile polishing residue on geopolymer cement. Journal of Cleaner Production, 191, 297–303. doi:10.1016/j.jclepro.2018.04.236.
[14] Mangat, P., & Lambert, P. (2016). Sustainability of alkali-activated cementitious materials and geopolymers. Sustainability of construction materials. Woodhead Publishing, Sawston, United Kingdom. doi:10.1016/c2014-0-02849-3.
[15] Teixeira, O. G., Geraldo, R. H., da Silva, F. G., Gonçalves, J. P., & Camarini, G. (2019). Mortar type influence on mechanical performance of repaired reinforced concrete beams. Construction and Building Materials, 217, 372–383. doi:10.1016/j.conbuildmat.2019.05.035.
[16] Odeh, A., Al-Fakih, A., Alghannam, M., Al-Ainya, M., Khalid, H., Al-Shugaa, M. A., Thomas, B. S., & Aswin, M. (2024). Recent Progress in Geopolymer Concrete Technology: A Review. Iranian Journal of Science and Technology - Transactions of Civil Engineering, 48(5), 3285–3308. doi:10.1007/s40996-024-01391-z.
[17] Trincal, V., Multon, S., Benavent, V., Lahalle, H., Balsamo, B., Caron, A., Bucher, R., Diaz Caselles, L., & Cyr, M. (2022). Shrinkage mitigation of metakaolin-based geopolymer activated by sodium silicate solution. Cement and Concrete Research, 162, 106993. doi:10.1016/j.cemconres.2022.106993.
[18] Li, Z., Gao, P., & Ye, G. (2017). Experimental study on autogenous deformation of metakaolin based geopolymer. 2nd International RILEM/COST Conference on Early Age Cracking and Serviceability in Cement-Based Materials and Structures, 12-14 September, 2017, Brussels, Belgium.
[19] Archez, J., Farges, R., Gharzouni, A., & Rossignol, S. (2021). Influence of the geopolymer formulation on the endogeneous shrinkage. Construction and Building Materials, 298, 123813. doi:10.1016/j.conbuildmat.2021.123813.
[20] Lolli, F., Thomas, J. J., Kurtis, K. E., Cucinotta, F., & Masoero, E. (2021). Early age volume changes in metakaolin geopolymers: Insights from molecular simulations and experiments. Cement and Concrete Research, 144, 106428. doi:10.1016/j.cemconres.2021.106428.
[21] Ma, Y., & Ye, G. (2015). The shrinkage of alkali activated fly ash. Cement and Concrete Research, 68, 75–82. doi:10.1016/j.cemconres.2014.10.024.
[22] Panchmatia, P., Olvera, R., Genedy, M., Juenger, M. C. G., & van Oort, E. (2020). Shrinkage behavior of Portland and geopolymer cements at elevated temperature and pressure. Journal of Petroleum Science and Engineering, 195(5), 107884. doi:10.1016/j.petrol.2020.107884.
[23] Ridtirud, C., Chindaprasirt, P., & Pimraksa, K. (2011). Factors affecting the shrinkage of fly ash geopolymers. International Journal of Minerals, Metallurgy and Materials, 18(1), 100–104. doi:10.1007/s12613-011-0407-z.
[24] Kuenzel, C., Vandeperre, L. J., Donatello, S., Boccaccini, A. R., & Cheeseman, C. (2012). Ambient temperature drying shrinkage and cracking in metakaolin-based geopolymers. Journal of the American Ceramic Society, 95(10), 3270–3277. doi:10.1111/j.1551-2916.2012.05380.x.
[25] Yang, J., Wang, Q., & Zhou, Y. (2017). Influence of Curing Time on the Drying Shrinkage of Concretes with Different Binders and Water-to-Binder Ratios. Advances in Materials Science and Engineering, 2017, 1–10. doi:10.1155/2017/2695435.
[26] Xiang, J., Liu, L., Cui, X., He, Y., Zheng, G., & Shi, C. (2019). Effect of Fuller-fine sand on rheological, drying shrinkage, and microstructural properties of metakaolin-based geopolymer grouting materials. Cement and Concrete Composites, 104, 103381. doi:10.1016/j.cemconcomp.2019.103381.
[27] Olvera, R., Panchmatia, P., Juenger, M., Aldin, M., & van Oort, E. (2019). Long-term oil well zonal isolation control using geopolymers: An analysis of shrinkage behavior. SPE/IADC Drilling Conference and Exhibition, 5-7 March, 2019, Hague, Netherlands.
[28] Yuan, Q., Huang, Y. Ling, Huang, T. Jie, Yao, H., & Wu, Q. Hong. (2022). Effect of activator on rheological properties of alkali-activated slag-fly ash pastes. Journal of Central South University, 29(1), 282–295. doi:10.1007/s11771-022-4913-0.
[29] Ye, H., Cartwright, C., Rajabipour, F., & Radlińska, A. (2017). Understanding the drying shrinkage performance of alkali-activated slag mortars. Cement and Concrete Composites, 76, 13–24. doi:10.1016/j.cemconcomp.2016.11.010.
[30] Mastali, M., Kinnunen, P., Dalvand, A., Mohammadi Firouz, R., & Illikainen, M. (2018). Drying shrinkage in alkali-activated binders – A critical review. Construction and Building Materials, 190, 533–550. doi:10.1016/j.conbuildmat.2018.09.125.
[31] Scherer, G. W. (1990). Theory of Drying. Journal of the American Ceramic Society, 73(1), 3–14. doi:10.1111/j.1151-2916.1990.tb05082.x.
[32] Steiner, L. R., Bernardin, A. M., & Pelisser, F. (2015). Effectiveness of ceramic tile polishing residues as supplementary cementitious materials for cement mortars. Sustainable Materials and Technologies, 4, 30–35. doi:10.1016/j.susmat.2015.05.001.
[33] Sun, Z., Cui, H., An, H., Tao, D., Xu, Y., Zhai, J., & Li, Q. (2013). Synthesis and thermal behavior of geopolymer-type material from waste ceramic. Construction and Building Materials, 49, 281–287. doi:10.1016/j.conbuildmat.2013.08.063.
[34] Reig, L., Tashima, M. M., Soriano, L., Borrachero, M. V., Monzó, J., & Payá, J. (2013). Alkaline activation of ceramic waste materials. Waste and Biomass Valorization, 4(4), 729–736. doi:10.1007/s12649-013-9197-z.
[35] Cartwright, C., Rajabipour, F., & Radlińska, A. (2015). Shrinkage Characteristics of Alkali-Activated Slag Cements. Journal of Materials in Civil Engineering, 27(7), 4014007. doi:10.1061/(asce)mt.1943-5533.0001058.
[36] EN 196-1:1994. (1994). Method of testing cement-Part1: Determination of strength. European Committee for Standardization (CEN), Brussels, Belgium.
[37] ASTM C 157/C157M-17. (2024). Standard Test Method for Length Change of Hardened Hydraulic-Cement Mortar and Concrete. ASTM International, Pennsylvania, United States. doi:10.1520/C0157_C0157M-17.
[38] ASTM C944M. (2017). Standard Test Method for Abrasion Resistance of Concrete or Mortar Surfaces by the Rotating-Cutter Method. ASTM International, Pennsylvania, United States. doi:10.1520/C0944-99.
[39] Bakharev, T. (2005). Resistance of geopolymer materials to acid attack. Cement and Concrete Research, 35(4), 658–670. doi:10.1016/j.cemconres.2004.06.005.
[40] Xie, Y., Lin, X., Ji, T., Liang, Y., & Pan, W. (2019). Comparison of corrosion resistance mechanism between ordinary Portland concrete and alkali-activated concrete subjected to biogenic sulfuric acid attack. Construction and Building Materials, 228, 117071. doi:10.1016/j.conbuildmat.2019.117071.
[41] Yan, D., Chen, S., Jin, J., Zhu, X., Wang, J., & Zeng, Q. (2021). Chemical-physical-mechanical stability of MKG mortars under sulfate attacks. Advances in Cement Research, 33(5), 224–238. doi:10.1680/jadcr.19.00094.
[42] Choi, S. J., Choi, J. I., Song, J. K., & Lee, B. Y. (2015). Rheological and mechanical properties of fiber-reinforced alkali-activated composite. Construction and Building Materials, 96, 112-118. doi:10.1016/j.conbuildmat.2015.07.182.
[43] Park, S., & Pour-Ghaz, M. (2018). What is the role of water in the geopolymerization of metakaolin? Construction and Building Materials, 182(10), 360–370. doi:10.1016/j.conbuildmat.2018.06.073.
[44] Douiri, H., Louati, S., Baklouti, S., Arous, M., & Fakhfakh, Z. (2014). Structural, thermal and dielectric properties of phosphoric acid-based geopolymers with different amounts of H3PO4. Materials Letters, 116, 9–12. doi:10.1016/j.matlet.2013.10.075.
[45] Xiao, L., Zhang, C., Zhang, H., & Jiang, Z. (2024). Internal Curing Effects of Slag on Properties and Microstructure of Ambient-Cured Fly Ash-Based Geopolymer Mortar. Buildings, 14(12), 3846. doi:10.3390/buildings14123846.
[46] Rashad, A. M. (2015). An investigation of high-volume fly ash concrete blended with slag subjected to elevated temperatures. Journal of Cleaner Production, 93, 47–55. doi:10.1016/j.jclepro.2015.01.031.
[47] Davidovits, J. (2021). Geopolymer Science and Global Warming. Geopolymer Institute, Saint-Quentin, France.
[48] Nath, P., & Sarker, P. K. (2014). Effect of GGBFS on setting, workability and early strength properties of fly ash geopolymer concrete cured in ambient condition. Construction and Building Materials, 66, 163–171. doi:10.1016/j.conbuildmat.2014.05.080.
[49] Klima, K. M., Schollbach, K., Brouwers, H. J. H., & Yu, Q. (2022). Thermal and fire resistance of Class F fly ash based geopolymers – A review. Construction and Building Materials, 323, 126529. doi:10.1016/j.conbuildmat.2022.126529.
[50] Duran Atiş, C., Bilim, C., Çelik, Ö., & Karahan, O. (2009). Influence of activator on the strength and drying shrinkage of alkali-activated slag mortar. Construction and Building Materials, 23(1), 548–555. doi:10.1016/j.conbuildmat.2007.10.011.
[51] Lee, N. K., Jang, J. G., & Lee, H. K. (2014). Shrinkage characteristics of alkali-activated fly ash/slag paste and mortar at early ages. Cement and Concrete Composites, 53, 239–248. doi:10.1016/j.cemconcomp.2014.07.007.
[52] Peng, H., Long, Z. L., & Yang, Y. W. (2025). Study on the drying shrinkage behavior and influencing factors of fly ash-based geopolymers under different humidity conditions. Construction and Building Materials, 473, 141041. doi:10.1016/j.conbuildmat.2025.141041.
[53] Lou, Y., Huang, M., Kang, S., Hu, M., Wu, W., & Chen, S. (2024). Study on basic performance and drying shrinkage of binary solid waste geopolymer prepared with recycled powders and slag. Case Studies in Construction Materials, 20. doi:10.1016/j.cscm.2024.e03195.
[54] Musikasiri, T. (2017). Factors affecting fresh and hardened properties of geopolymer concrete made with high calcium fly ash. Master thesis, King Mongkut’s University of Technology Thonburi, Bangkok, Thailand.
[55] Ruengsillapanun, K., Udtaranakron, T., Pulngern, T., Tangchirapat, W., & Jaturapitakkul, C. (2021). Mechanical properties, shrinkage, and heat evolution of alkali activated fly ash concrete. Construction and Building Materials, 299, 123954. doi:10.1016/j.conbuildmat.2021.123954.
[56] Aydin, S., & Baradan, B. (2014). Effect of activator type and content on properties of alkali-activated slag mortars. Composites Part B: Engineering, 57, 166–172. doi:10.1016/j.compositesb.2013.10.001.
[57] Kumar, S., Kumar, R., & Mehrotra, S. P. (2010). Influence of granulated blast furnace slag on the reaction, structure and properties of fly ash based geopolymer. Journal of Materials Science, 45(3), 607–615. doi:10.1007/s10853-009-3934-5.
[58] Yan, G., Hu, J., Chen, M., Ma, Y., Huang, H., Zhang, Z., Wei, J., Shi, C., & Yu, Q. (2025). Performance evaluation of reinforced slag-fly ash-ceramic waste powders ternary geopolymer concrete under chloride ingress environment. Construction and Building Materials, 478, 141447. doi:10.1016/j.conbuildmat.2025.141447.
[59] Hanumananaik, M., & Subramaniam, K. V. L. (2023). Influence of Process Variables on Shrinkage in Low-Calcium Fly-Ash Geopolymers. Journal of Materials in Civil Engineering, 35(6), 1–10. doi:10.1061/jmcee7.mteng-14761.
[60] Hanumananaik, M., & Subramaniam, K. V. L. (2023). Shrinkage in low-calcium fly ash geopolymers for precast applications: Reaction product content and pore structure under drying conditions. Journal of Building Engineering, 78, 107583. doi:10.1016/j.jobe.2023.107583.
[61] Chen, W., Li, B., Wang, J., & Thom, N. (2021). Effects of alkali dosage and silicate modulus on autogenous shrinkage of alkali-activated slag cement paste. Cement and Concrete Research, 141, 106322. doi:10.1016/j.cemconres.2020.106322.
[62] Hu, X., Shi, C., Zhang, Z., & Hu, Z. (2019). Autogenous and drying shrinkage of alkali‐activated slag mortars. Journal of the American Ceramic Society, 102(8), 4963-4975. doi:10.1111/jace.16349.
[63] Ballekere Kumarappa, D., Peethamparan, S., & Ngami, M. (2018). Autogenous shrinkage of alkali activated slag mortars: Basic mechanisms and mitigation methods. Cement and Concrete Research, 109, 1–9. doi:10.1016/j.cemconres.2018.04.004.
[64] Liu, M., Wu, H., Yao, P., Wang, C., & Ma, Z. (2022). Microstructure and macro properties of sustainable alkali-activated fly ash mortar with various construction waste fines as binder replacement up to 100%. Cement and Concrete Composites, 134, 104733. doi:10.1016/j.cemconcomp.2022.104733.
[65] Jithendra, C., & Elavenil, S. (2019). Role of superplasticizer on GGBS based Geopolymer concrete under ambient curing. Materials Today: Proceedings, 18, 148–154. doi:10.1016/j.matpr.2019.06.288.
[66] Desole, M. P., Fedele, L., Gisario, A., & Barletta, M. (2024). Life Cycle Assessment (LCA) of ceramic sanitaryware: focus on the production process and analysis of scenario. International Journal of Environmental Science and Technology, 21(2), 1649–1670. doi:10.1007/s13762-023-05074-6.
[67] Kirschner, A., & Harmuth, H. (2004). Investigation of geopolymer binders with respect to their application for building materials. Ceramics-silikaty, 48(3), 117-120.
[68] Xie, Z., & Xi, Y. (2001). Hardening mechanisms of an alkaline-activated class F fly ash. Cement and Concrete Research, 31(9), 1245–1249. doi:10.1016/S0008-8846(01)00571-3.
[69] Lee, W. K. W., & Van Deventer, J. S. J. (2002). The effect of ionic contaminants on the early-age properties of alkali-activated fly ash-based cements. Cement and Concrete Research, 32(4), 577–584. doi:10.1016/S0008-8846(01)00724-4.
[70] Gunasekara, C., Law, D., Bhuiyan, S., Setunge, S., & Ward, L. (2019). Chloride induced corrosion in different fly ash based geopolymer concretes. Construction and Building Materials, 200, 502–513. doi:10.1016/j.conbuildmat.2018.12.168.
[71] Kupwade-Patil, K., & Allouche, E. N. (2013). Examination of Chloride-Induced Corrosion in Reinforced Geopolymer Concretes. Journal of Materials in Civil Engineering, 25(10), 1465–1476. doi:10.1061/(asce)mt.1943-5533.0000672.
[72] Noushini, A., Castel, A., Aldred, J., & Rawal, A. (2020). Chloride diffusion resistance and chloride binding capacity of fly ash-based geopolymer concrete. Cement and Concrete Composites, 105, 103290. doi:10.1016/j.cemconcomp.2019.04.006.
[73] Pradhan, P., Panda, S., Kumar Parhi, S., & Kumar Panigrahi, S. (2022). Factors affecting production and properties of self-compacting geopolymer concrete – A review. Construction and Building Materials, 344, 128174. doi:10.1016/j.conbuildmat.2022.128174.
[74] Pradhan, P., Panda, S., Kumar Parhi, S., & Kumar Panigrahi, S. (2022). Effect of critical parameters on the fresh properties of Self Compacting geopolymer concrete. Materials Today: Proceedings, 62(P12), 6325–6335. doi:10.1016/j.matpr.2022.02.506.
[75] Memon, F. A., Nuruddin, M. F., Demie, S., & Shafiq, N. (2012). Effect of superplasticizer and extra water on workability and compressive strength of self-compacting geopolymer concrete. Research Journal of Applied Sciences, Engineering and Technology, 4(5), 407–414.
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.![]()















