Robust Ensemble Machine Learning for Flash Flood Susceptibility Mapping Across Semiarid Regions
Downloads
Flash floods cause severe environmental and socio-economic impacts in arid and semi-arid regions. This study aims to improve the accuracy of flash flood susceptibility mapping in southwestern Morocco’s Assaka watershed by using an ensemble of machine learning models. Four models, Logistic Regression (LR), Multivariate Discriminant Analysis (MDA), Naïve Bayes (NB), and Multilayer Perceptron (MLP), were trained on a flood inventory of over 1.5 million data points and 14 environmental factors (e.g., altitude, slope, land surface temperature, soil moisture index). Each model produced a susceptibility map, and a voting ensemble of the top-performing models (all above 80% accuracy) further improved reliability. The MLP achieved the highest predictive performance, followed closely by LR and MDA. Sensitivity analysis identified altitude, topographic position index, land surface temperature, and soil moisture index as the most influential factors. The ensemble susceptibility map highlights densely populated areas near the city of Guelmim and infrastructure along major rivers as most prone to flash flooding. These findings enable practical mitigation measures such as improved drainage, early warning systems, and better land-use planning in high-risk zones. Integrating multiple models in an ensemble is a novel approach that reduces uncertainty and provides a more robust tool for flash flood risk prediction.
Downloads
[1] Aljazeera. (2014). Morocco flash floods leave dozens dead. Available online: https://Aljazeera.Com/News/2014/11/24/Morocco-Flash-Floods-Leave-Dozens-Dead#:~:Text=Boulid%20told%20Al%20Jazeera%20that,But%20chose%20to%20ignore%20them (accessed on November 2025).
[2] Cherif, M., Díaz-Cassou, J., & Megevand, C. (2023). Climate Change and Development in Morocco. Morocco’s Quest for Stronger and Inclusive Growth, 121.
[3] FloodList (2014). Death Toll Rises to 32 in Morocco Floods. Available online: https://Floodlist.Com/Africa/Death-Toll-Rises-32-Morocco-Floods#:~:Text=The%20worst%20hit%20area%20is,Are%20still%20a%20major%20concern (accessed on July 2025).
[4] Khaddari, A., Jari, A., Chakiri, S., El Hadi, H., Labriki, A., Hajaj, S., El Harti, A., Goumghar, L., & Abioui, M. (2023). A Comparative Analysis of Analytical Hierarchy Process and Fuzzy Logic Modeling in Flood Susceptibility Mapping in the Assaka Watershed, Morocco. Journal of Ecological Engineering, 24(8), 62–83. doi:10.12911/22998993/165958.
[5] Khalaf, M., Alaskar, H., Hussain, A. J., Baker, T., Maamar, Z., Buyya, R., Liatsis, P., Khan, W., Tawfik, H., & Al-Jumeily, D. (2020). IoT-Enabled Flood Severity Prediction via Ensemble Machine Learning Models. IEEE Access, 8, 70375–70386. doi:10.1109/access.2020.2986090.
[6] Razali, N., Ismail, S., & Mustapha, A. (2020). Machine learning approach for flood risks prediction. IAES International Journal of Artificial Intelligence (IJ-AI), 9(1), 73. doi:10.11591/ijai.v9.i1.pp73-80.
[7] El-Haddad, B. A., Youssef, A. M., Pourghasemi, H. R., Pradhan, B., El-Shater, A.-H., & El-Khashab, M. H. (2020). Flood susceptibility prediction using four machine learning techniques and comparison of their performance at Wadi Qena Basin, Egypt. Natural Hazards, 105(1), 83–114. doi:10.1007/s11069-020-04296-y.
[8] Singha, C., Swain, K. C., Meliho, M., Abdo, H. G., Almohamad, H., & Al-Mutiry, M. (2022). Spatial Analysis of Flood Hazard Zoning Map Using Novel Hybrid Machine Learning Technique in Assam, India. Remote Sensing, 14(24), 6229. doi:10.3390/rs14246229.
[9] Talha, S., Akhssas, A., Aarab, A., Aabi, A., & Berkat, B. (2025). Enhancing flash flood risk prediction: A case study from the Assaka watershed, Guelmim region, Southwestern Morocco. Ecological Engineering & Environmental Technology, 26(1), 8–28. doi:10.12912/27197050/195227.
[10] Atbir, H. (2020). Opportunités et obstacles de la Ceinture verte de Guelmim, Sud-Ouest Marocain. Cinq Continents 10 (22): 304-319.
[11] City Population. (2024). Guelmim. Available online: https://www.citypopulation.de/en/morocco/guelmimouednoun/ guelmim/26101030__guelmim/ (accessed on November 2025).
[12] Support the Guardian. (2014). Morocco hit by floods killing 32 people and leaving hundreds stranded. Available online: https://www.theguardian.com/world/2014/nov/24/morocco-flooding-32-killed-stranded (accessed on November 2025).
[13] Theilen-Willige, B., Charif, A., Ouahidi, A., Chaibi, M., Ougougdal, M., & AitMalek, H. (2015). Flash Floods in the Guelmim Area/Southwest Morocco–Use of Remote Sensing and GIS-Tools for the Detection of Flooding-Prone Areas. Geosciences, 5(2), 203–221. doi:10.3390/geosciences5020203.
[14] Talha, S., Maanan, M., Atika, H., & Rhinane, H. (2019). Prediction of Flash Flood Susceptibility Using Fuzzy Analytical Hierarchy Process (FAHP) Algorithms and GIS: A Study Case of Guelmim Region in Southwestern of Morocco. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-4/W19, 407–414. doi:10.5194/isprs-archives-xlii-4-w19-407-2019.
[15] Atta, H. A. (2023). Seasonal Flooding Impact on Land Surface Temperature (LST) in Response to Vegetation Index Using Spectral Radiance Model in Kirkuk, Iraq. IOP Conference Series: Earth and Environmental Science, 1202(1), 012019. doi:10.1088/1755-1315/1202/1/012019.
[16] El Haou, M., Ourribane, M., Ismaili, M., Krimissa, S., & Namous, M. (2025). Enhancing urban flood hazard assessment: a comparative analysis of frequency ratio and xgboost models for precision risk mapping. Ecological Engineering & Environmental Technology, 26(3), 286–300. doi:10.12912/27197050/200141.
[17] Tehrany, M. S., Jones, S., & Shabani, F. (2019). Identifying the essential flood conditioning factors for flood prone area mapping using machine learning techniques. CATENA, 175, 174–192. doi:10.1016/j.catena.2018.12.011.
[18] Lawford, R. G., Prowse, T. D., Hogg, W. D., Warkentin, A. A., & Pilon, P. J. (1995). Hydrometeorological aspects of flood hazards in Canada. Atmosphere-Ocean, 33(2), 303–328. doi:10.1080/07055900.1995.9649535.
[19] Ulloa-Cedamanos, F., Probst, A., Dos-Santos, V., Camboulive, T., Granouillac, F., & Probst, J.-L. (2021). Stream Hydrochemical Response to Flood Events in a Multi-Lithological Karstic Catchment from the Pyrenees Mountains (SW France). Water, 13(13), 1818. doi:10.3390/w13131818.
[20] Bisht, S., Chaudhry, S., Sharma, S., & Soni, S. (2018). Assessment of flash flood vulnerability zonation through Geospatial technique in high altitude Himalayan watershed, Himachal Pradesh India. Remote Sensing Applications: Society and Environment, 12, 35–47. doi:10.1016/j.rsase.2018.09.001.
[21] Giguet-Covex, C., Arnaud, F., Enters, D., Poulenard, J., Millet, L., Francus, P., David, F., Rey, P.-J., Wilhelm, B., & Delannoy, J.-J. (2012). Frequency and intensity of high-altitude floods over the last 3.5 ka in northwestern French Alps (Lake Anterne). Quaternary Research, 77(1), 12–22. doi:10.1016/j.yqres.2011.11.003.
[22] Maranguit, D., Guillaume, T., & Kuzyakov, Y. (2017). Effects of flooding on phosphorus and iron mobilization in highly weathered soils under different land-use types: Short-term effects and mechanisms. CATENA, 158, 161–170. doi:10.1016/j.catena.2017.06.023.
[23] Basri, H., Syakur, S., Azmeri, A., & Fatimah, E. (2022). Floods and their problems: Land uses and soil types perspectives. IOP Conference Series: Earth and Environmental Science, 951(1), 012111. doi:10.1088/1755-1315/951/1/012111.
[24] Soriano, I. R., Prot, J. C., & Matias, D. M. (2000). Expression of tolerance for Meloidogyne graminicola in rice cultivars as affected by soil type and flooding. Journal of Nematology, 32(3), 309.
[25] Rahaman, S. N., & Shermin, N. (2022). Identifying the effect of monsoon floods on vegetation and land surface temperature by using Google Earth Engine. Urban Climate, 43, 101162. doi:10.1016/j.uclim.2022.101162.
[26] Xue, Y., Diallo, I., Li, W., David Neelin, J., Chu, P. C., Vasic, R., Guo, W., Li, Q., Robinson, D. A., Zhu, Y., Fu, C., & Oaida, C. M. (2018). Spring Land Surface and Subsurface Temperature Anomalies and Subsequent Downstream Late Spring‐Summer Droughts/Floods in North America and East Asia. Journal of Geophysical Research: Atmospheres, 123(10), 5001–5019. Portico. doi:10.1029/2017jd028246.
[27] Pallard, B., Castellarin, A., & Montanari, A. (2009). A look at the links between drainage density and flood statistics. Hydrology and Earth System Sciences, 13(7), 1019–1029. doi:10.5194/hess-13-1019-2009.
[28] Yang, S.-Y., Chang, C.-H., Hsu, C.-T., & Wu, S.-J. (2022). Variation of uncertainty of drainage density in flood hazard mapping assessment with coupled 1D–2D hydrodynamics model. Natural Hazards, 111(3), 2297-2315. doi:10.1007/s11069-021-05138-1.
[29] Nied, M., Hundecha, Y., & Merz, B. (2013). Flood-initiating catchment conditions: a spatio-temporal analysis of large-scale soil moisture patterns in the Elbe River basin. Hydrology and Earth System Sciences, 17(4), 1401–1414. doi:10.5194/hess-17-1401-2013.
[30] Bannari, A., Rhinane, H., & Bahi, H. (2019). Synergy between SMOS-MIRAS and Landsat-OLI/TIRS Data for Soil Moisture Mapping before, during, and after Flash-Flood Storm in Southwestern Morocco. Topics in Hydrometerology. doi:10.5772/intechopen.79554.
[31] Wu, W., Emerton, R., Duan, Q., Wood, A. W., Wetterhall, F., & Robertson, D. E. (2020). Ensemble flood forecasting: Current status and future opportunities. WIREs Water, 7(3). Portico. doi:10.1002/wat2.1432.
[32] Buttle, J. M., Allen, D. M., Caissie, D., Davison, B., Hayashi, M., Peters, D. L., Pomeroy, J. W., Simonovic, S., St-Hilaire, A., & Whitfield, P. H. (2016). Flood processes in Canada: Regional and special aspects. Canadian Water Resources Journal / Revue Canadienne Des Ressources Hydriques, 41(1–2), 7–30. doi:10.1080/07011784.2015.1131629.
[33] Zope, P. E., Eldho, T. I., & Jothiprakash, V. (2016). Impacts of land use–land cover change and urbanization on flooding: A case study of Oshiwara River Basin in Mumbai, India. CATENA, 145, 142–154. doi:10.1016/j.catena.2016.06.009.
[34] Hasan, M. M., Mondol Nilay, M. S., Jibon, N. H., & Rahman, R. M. (2023). LULC changes to riverine flooding: A case study on the Jamuna River, Bangladesh using the multilayer perceptron model. Results in Engineering, 18, 101079. doi:10.1016/j.rineng.2023.101079.
[35] Adnan, M. S. G., Abdullah, A. Y. M., Dewan, A., & Hall, J. W. (2020). The effects of changing land use and flood hazard on poverty in coastal Bangladesh. Land Use Policy, 99, 104868. doi:10.1016/j.landusepol.2020.104868.
[36] Khaldi, L., El Bilali, A., El Abed, A., Krakauer, N., & El Khanchoufi, A. (2025). Developing an explainable and interpretable machine learning model for flood susceptibility mapping. Ecological Engineering & Environmental Technology, 26(1), 201–215. doi:10.12912/27197050/195845.
[37] Adnan, M. S. G., Talchabhadel, R., Nakagawa, H., & Hall, J. W. (2020). The potential of Tidal River Management for flood alleviation in South Western Bangladesh. Science of The Total Environment, 731, 138747. doi:10.1016/j.scitotenv.2020.138747.
[38] Mind’je, R., Li, L., Amanambu, A. C., Nahayo, L., Nsengiyumva, J. B., Gasirabo, A., & Mindje, M. (2019). Flood susceptibility modeling and hazard perception in Rwanda. International Journal of Disaster Risk Reduction, 38, 101211. doi:10.1016/j.ijdrr.2019.101211.
[39] Paiva, R. C. D., & Lima, S. G. (2024). A Simple Model of Flood Peak Attenuation. Water Resources Research, 60(2). Portico. doi:10.1029/2023wr034692.
[40] Tehrany, M. S., Pradhan, B., & Jebur, M. N. (2013). Spatial prediction of flood susceptible areas using rule based decision tree (DT) and a novel ensemble bivariate and multivariate statistical models in GIS. Journal of Hydrology, 504, 69–79. doi:10.1016/j.jhydrol.2013.09.034.
[41] Calderón, H., Pérez, J. E., Chow, M., & Reyna, J. B. (2020). Índice de Posición Topográfica (TPI) para identificar áreas inundables y zonificación de especies vegetales en un manglar del Pacífico Sur de Nicaragua. Revista Torreón Universitario, 9(26), 124–146. doi:10.5377/torreon.v9i26.10264.
[42] Zhran, M., Ghanem, K., Tariq, A., Alshehri, F., Jin, S., Das, J., Pande, C. B., Pramanik, M., Hasher, F. F. Ben & Mousa, A. (2024). Exploring a GIS-based analytic hierarchy process for spatial flood risk assessment in Egypt: a case study of the Damietta branch. Environmental Sciences Europe, 36(1), 184. doi:10.1186/s12302-024-01001-9.
[43] Costache, R., Arabameri, A., Costache, I., Crăciun, A., & Pham, B. T. (2022). New Machine Learning Ensemble for Flood Susceptibility Estimation. Water Resources Management, 36(12), 4765–4783. doi:10.1007/s11269-022-03276-0.
[44] Gupta, L., & Dixit, J. (2024). Investigating the spatial distribution of flood inundation and landforms using topographic position index (TPI) and geomorphon-based automated landform classification methods. Journal of Earth System Science, 133(3). doi:10.1007/s12040-024-02343-x.
[45] Hasegawa, A., Gusyev, M., & Iwami, Y. (2016). Meteorological Drought and Flood Assessment Using the Comparative SPI Approach in Asia Under Climate Change. Journal of Disaster Research, 11(6), 1082–1090. doi:10.20965/jdr.2016.p1082.
[46] Guerreiro, M. J., Lajinha, T., & Abreu, I. (2007). Flood analysis with the standardized precipitation index (SPI), Revista da Faculdade de Ciênca e Tecnologia Porto, 4: 8-14.
[47] Seiler, R. A., Hayes, M., & Bressan, L. (2002). Using the standardized precipitation index for flood risk monitoring. International Journal of Climatology, 22(11), 1365–1376. Portico. doi:10.1002/joc.799.
[48] Tincu, R., Lazar, G., & Lazar, I. (2018). Modified flash flood potential index in order to estimate areas with predisposition to water accumulation. Open Geosciences, 10(1), 593–606. doi:10.1515/geo-2018-0047.
[49] Vojtek, M., & Vojteková, J. (2019). Flood Susceptibility Mapping on a National Scale in Slovakia Using the Analytical Hierarchy Process. Water, 11(2), 364. doi:10.3390/w11020364.
[50] Kourgialas, N. N., & Karatzas, G. P. (2011). Flood management and a GIS modelling method to assess flood-hazard areas—a case study. Hydrological Sciences Journal, 56(2), 212–225. doi:10.1080/02626667.2011.555836.
[51] Najibi, N., Devineni, N., Lu, M., & Perdigão, R. A. P. (2019). Coupled flow accumulation and atmospheric blocking govern flood duration. Npj Climate and Atmospheric Science, 2(1). doi:10.1038/s41612-019-0076-6.
[52] Langston, A. L., & Temme, A. J. A. M. (2019). Bedrock erosion and changes in bed sediment lithology in response to an extreme flood event: The 2013 Colorado Front Range flood. Geomorphology, 328, 1–14. doi:10.1016/j.geomorph.2018.11.015.
[53] Almikaeel, W., Šoltész, A., Čubanová, L., & Baroková, D. (2024). Hydro-informer: a deep learning model for accurate water level and flood predictions. Natural Hazards, 121(4), 3959–3979. doi:10.1007/s11069-024-06949-8.
[54] Keum, H. J., Han, K. Y., & Kim, H. I. (2020). Real-Time Flood Disaster Prediction System by Applying Machine Learning Technique. KSCE Journal of Civil Engineering, 24(9), 2835–2848. doi:10.1007/s12205-020-1677-7.
[55] Khalaf, M., Hussain, A. J., Al-Jumeily, D., Baker, T., Keight, R., Lisboa, P., Fergus, P., & Al Kafri, A. S. (2018). A Data Science Methodology Based on Machine Learning Algorithms for Flood Severity Prediction. 2018 IEEE Congress on Evolutionary Computation (CEC), 1–8. doi:10.1109/cec.2018.8477904.
[56] Liu, J., Wang, J., Xiong, J., Cheng, W., Sun, H., Yong, Z., & Wang, N. (2021). Hybrid Models Incorporating Bivariate Statistics and Machine Learning Methods for Flash Flood Susceptibility Assessment Based on Remote Sensing Datasets. Remote Sensing, 13(23), 4945. doi:10.3390/rs13234945.
[57] Dodangeh, E., Choubin, B., Eigdir, A. N., Nabipour, N., Panahi, M., Shamshirband, S., & Mosavi, A. (2020). Integrated machine learning methods with resampling algorithms for flood susceptibility prediction. Science of the Total Environment, 705, 135983. doi:10.1016/j.scitotenv.2019.135983.
[58] Sangodoyin, A. O., Akinsolu, M. O., Pillai, P., & Grout, V. (2021). Detection and Classification of DDoS Flooding Attacks on Software-Defined Networks: A Case Study for the Application of Machine Learning. IEEE Access, 9, 122495–122508. doi:10.1109/access.2021.3109490.
[59] Giladi, N., Ben-Haim, Z., Nevo, S., Matias, Y., & Soudry, D. (2021). Physics-aware downsampling with deep learning for scalable flood modeling. Advances in Neural Information Processing Systems, 34, 1378-1389.
[60] Chen, J., Li, Q., Wang, H., & Deng, M. (2019). A Machine Learning Ensemble Approach Based on Random Forest and Radial Basis Function Neural Network for Risk Evaluation of Regional Flood Disaster: A Case Study of the Yangtze River Delta, China. International Journal of Environmental Research and Public Health, 17(1), 49. doi:10.3390/ijerph17010049.
[61] Taromideh, F., Fazloula, R., Choubin, B., Emadi, A., & Berndtsson, R. (2022). Urban Flood-Risk Assessment: Integration of Decision-Making and Machine Learning. Sustainability, 14(8), 4483. doi:10.3390/su14084483.
[62] Aswad, F. M., Kareem, A. N., Khudhur, A. M., Khalaf, B. A., & Mostafa, S. A. (2021). Tree-based machine learning algorithms in the Internet of Things environment for multivariate flood status prediction. Journal of Intelligent Systems, 31(1), 1–14. doi:10.1515/jisys-2021-0179.
[63] Ahmadlou, M., Al‐Fugara, A., Al‐Shabeeb, A. R., Arora, A., Al‐Adamat, R., Pham, Q. B., Al‐Ansari, N., Linh, N. T. T., & Sajedi, H. (2020). Flood susceptibility mapping and assessment using a novel deep learning model combining multilayer perceptron and autoencoder neural networks. Journal of Flood Risk Management, 14(1). doi:10.1111/jfr3.12683.
[64] Andaryani, S., Nourani, V., Haghighi, A. T., & Keesstra, S. (2021). Integration of hard and soft supervised machine learning for flood susceptibility mapping. Journal of Environmental Management, 291, 112731. doi:10.1016/j.jenvman.2021.112731.
[65] Maspo, N.-A., Bin Harun, A. N., Goto, M., Cheros, F., Haron, N. A., & Mohd Nawi, M. N. (2020). Evaluation of Machine Learning approach in flood prediction scenarios and its input parameters: A systematic review. IOP Conference Series: Earth and Environmental Science, 479(1), 012038. doi:10.1088/1755-1315/479/1/012038.
[66] Widiasari, I. R., Nugroho, L. E., & Widyawan. (2017). Deep learning multilayer perceptron (MLP) for flood prediction model using wireless sensor network based hydrology time series data mining. 2017 International Conference on Innovative and Creative Information Technology (ICITech), 1–5. doi:10.1109/innocit.2017.8319150.
[67] Youssef, A. M., Pourghasemi, H. R., Mahdi, A. M., & Matar, S. S. (2022). Flood vulnerability mapping and urban sprawl suitability using FR, LR, and SVM models. Environmental Science and Pollution Research, 30(6), 16081–16105. doi:10.1007/s11356-022-23140-3.
[68] Zhao, G., Pang, B., Xu, Z., Peng, D., & Xu, L. (2019). Assessment of urban flood susceptibility using semi-supervised machine learning model. Science of the Total Environment, 659, 940–949. doi:10.1016/j.scitotenv.2018.12.217.
[69] Irawan, L. Y., Sumarmi, Panoto, D., Nabila, Pradana, I. H., & Darmansyah, A. C. (2021). Combination of machine learning model (LR-FR) for flash flood susceptibility assessment in Dawuan Sub watershed Mojokerto Regency, East Java. IOP Conference Series: Earth and Environmental Science, 739(1), 012017. doi:10.1088/1755-1315/739/1/012017.
[70] Rahman, M., Ningsheng, C., Islam, M. M., Dewan, A., Iqbal, J., Washakh, R. M. A., & Shufeng, T. (2019). Flood Susceptibility Assessment in Bangladesh Using Machine Learning and Multi-criteria Decision Analysis. Earth Systems and Environment, 3(3), 585–601. doi:10.1007/s41748-019-00123-y.
[71] Saravanan, S., & Abijith, D. (2022). Flood susceptibility mapping of Northeast coastal districts of Tamil Nadu India using Multi-source Geospatial data and Machine Learning techniques. Geocarto International, 37(27), 15252–15281. doi:10.1080/10106049.2022.2096702.
[72] Luu, C., Bui, Q. D., Costache, R., Nguyen, L. T., Nguyen, T. T., Van Phong, T., Van Le, H., & Pham, B. T. (2021). Flood-prone area mapping using machine learning techniques: a case study of Quang Binh province, Vietnam. Natural Hazards, 108(3), 3229–3251. doi:10.1007/s11069-021-04821-7.
[73] Mahdizadeh Gharakhanlou, N., & Perez, L. (2022). Spatial Prediction of Current and Future Flood Susceptibility: Examining the Implications of Changing Climates on Flood Susceptibility Using Machine Learning Models. Entropy, 24(11), 1630. doi:10.3390/e24111630.
[74] Jamali, B., Haghighat, E., Ignjatovic, A., Leitão, J. P., & Deletic, A. (2021). Machine learning for accelerating 2D flood models: Potential and challenges. Hydrological Processes, 35(4). doi:10.1002/hyp.14064.
[75] Carreau, J., & Bouvier, C. (2015). Multivariate density model comparison for multi-site flood-risk rainfall in the French Mediterranean area. Stochastic Environmental Research and Risk Assessment, 30(6), 1591–1612. doi:10.1007/s00477-015-1166-6.
[76] Tan, H., Ping, W., Yang, T., Li, S., Liu, A., Zhou, J., Groves, J., & Sun, Z. (2007). The Synthetic Evaluation Model for Analysis of Flooding Hazards. The European Journal of Public Health, 17(2), 206–210. doi:10.1093/eurpub/ckl067.
[77] Sellami, E. M., Maanan, M., & Rhinane, H. (2022). Performance of Machine Learning Algorithms for Mapping and Forecasting of Flash Flood Susceptibility in Tetouan, Morocco. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLVI-4/W3-2021, 305–313. doi:10.5194/isprs-archives-xlvi-4-w3-2021-305-2022.
[78] Mekkaoui, O., Morarech, M., Bouramtane, T., Barbiero, L., Hamidi, M., Akka, H., & Rengasamy, R. P. M. (2025). Unveiling Urban Flood Vulnerability: A Machine Learning Approach for Mapping High Risk Zones in Tetouan City, Northern Morocco. Urban Science, 9(3), 70. doi:10.3390/urbansci9030070.
[79] Bammou, Y., Benzougagh, B., Igmoullan, B., Ouallali, A., Kader, S., Spalevic, V., Sestras, P., Billi, P., & Marković, S. B. (2024). Optimizing flood susceptibility assessment in semi-arid regions using ensemble algorithms: a case study of Moroccan High Atlas. Natural Hazards, 120(8), 7787–7816. doi:10.1007/s11069-024-06550-z.
[80] Janizadeh, S., Avand, M., Jaafari, A., Phong, T. V., Bayat, M., Ahmadisharaf, E., Prakash, I., Pham, B. T., & Lee, S. (2019). Prediction Success of Machine Learning Methods for Flash Flood Susceptibility Mapping in the Tafresh Watershed, Iran. Sustainability, 11(19), 5426. doi:10.3390/su11195426.
[81] Al-Kindi, K. M., & Alabri, Z. (2024). Investigating the Role of the Key Conditioning Factors in Flood Susceptibility Mapping Through Machine Learning Approaches. Earth Systems and Environment, 8(1), 63–81. doi:10.1007/s41748-023-00369-7.
[82] He, F., Liu, S., Mo, X., & Wang, Z. (2025). Interpretable flash flood susceptibility mapping in Yarlung Tsangpo River Basin using H2O Auto-ML. Scientific Reports, 15(1). doi:10.1038/s41598-024-84655-y.
[83] Islam, T., Zeleke, E. B., Afroz, M., & Melesse, A. M. (2025). A Systematic Review of Urban Flood Susceptibility Mapping: Remote Sensing, Machine Learning, and Other Modeling Approaches. Remote Sensing, 17(3), 524. doi:10.3390/rs17030524.
[84] Narimani, R., Jun, C., Shahzad, S., Oh, J., & Park, K. (2021). Application of a Novel Hybrid Method for Flood Susceptibility Mapping with Satellite Images: A Case Study of Seoul, Korea. Remote Sensing, 13(14), 2786. doi:10.3390/rs13142786.
[85] Ogato, G. S., Bantider, A., Abebe, K., & Geneletti, D. (2020). Geographic information system (GIS)-Based multicriteria analysis of flooding hazard and risk in Ambo Town and its watershed, West shoa zone, oromia regional State, Ethiopia. Journal of Hydrology: Regional Studies, 27, 100659. doi:10.1016/j.ejrh.2019.100659.
[86] Negese, A., Worku, D., Shitaye, A., & Getnet, H. (2022). Potential flood-prone area identification and mapping using GIS-based multi-criteria decision-making and analytical hierarchy process in Dega Damot district, northwestern Ethiopia. Applied Water Science, 12(12). doi:10.1007/s13201-022-01772-7.
[87] Roohi, M., Dehghani, J., Irani, M., & Mina, P. (2025). A comprehensive review of flood damage in mountainous regions: challenges, solutions, and advanced management technologies. Discover Geoscience, 3(1). doi:10.1007/s44288-025-00145-2.
[88] Ogden, F. L., Raj Pradhan, N., Downer, C. W., & Zahner, J. A. (2011). Relative importance of impervious area, drainage density, width function, and subsurface storm drainage on flood runoff from an urbanized catchment. Water Resources Research, 47(12). doi:10.1029/2011wr010550.
[89] Corapci, F., & Ozdemir, H. (2024). A new approach to flood susceptibility analysis of urbanised alluvial fans: the case of Bursa City (Türkiye). Natural Hazards, 120(14), 12909–12932. doi:10.1007/s11069-024-06723-w.
[90] Li, K., Guo, L., Wang, G., Gao, J., Ma, J., Li, J., Huang, P., Zhai, B., & Sun, X. (2025). A novel hybrid framework of high-resolution flood susceptibility mapping in ungauged mountainous regions. Weather and Climate Extremes, 50, 100822. doi:10.1016/j.wace.2025.100822
[91] Manopkawee, P., Mankhemthong, N., Kanthata, S., & Sooksabai, C. (2025). Quantifying Regional-Scale Flash Flood Susceptibility Using Watershed Geomorphometry-Based Approach along the High Range, West of Chiang Mai Basin, Northern Thailand. Natural Hazards Research. doi:10.1016/j.nhres.2025.07.001.
[92] Aichi, A., Ikirri, M., Ait Haddou, M., Quesada-Román, A., Sahoo, S., Singha, C., Sajinkumar, K. S., & Abioui, M. (2024). Integrated GIS and analytic hierarchy process for flood risk assessment in the Dades Wadi watershed (Central High Atlas, Morocco). Results in Earth Sciences, 2, 100019. doi:10.1016/j.rines.2024.100019.
[93] Ghosh, B., Garg, S. & Motagh, M. (2022). Automatic flood detection from sentinel-1 data using deep learning architectures. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 5(3), 201–208. doi:10.5194/isprs-Annals-V-3-2022-201-2022.
[94] Purwati, S. E., & Pristyanto, Y. (2024). Model Random Forest and Support Vector Machine for Flood Classification in Indonesia. Sinkron, 8(4), 2261–2268. doi:10.33395/sinkron.v8i4.13973.
[95] Jiang, S., Zheng, Y., Wang, C., & Babovic, V. (2022). Uncovering Flooding Mechanisms Across the Contiguous United States Through Interpretive Deep Learning on Representative Catchments. Water Resources Research, 58(1). doi:10.1029/2021wr030185.
[96] Patil, K. R., Doi, T., & Behera, S. K. (2023). Predicting extreme floods and droughts in East Africa using a deep learning approach. npj Climate and Atmospheric Science, 6(1). doi:10.1038/s41612-023-00435-x.
[97] Wang, X., Bai, Y., Zhang, L., Jiang, G., Zhang, P., Liu, J., Li, L., Huang, L., & Qin, P. (2024). Identification and core gene-mining of Weighted Gene Co-expression Network Analysis-based co-expression modules related to flood resistance in quinoa seedlings. BMC Genomics, 25(1). doi:10.1186/s12864-024-10638-y.
[98] Liu, Z., Felton, T., & Mostafavi, A. (2024). Interpretable machine learning for predicting urban flash flood hotspots using intertwined land and built-environment features. Computers, Environment and Urban Systems, 110, 102096. doi:10.1016/j.compenvurbsys.2024.102096.
[99] Yuan, F., Yang, Y., Li, Q., & Mostafavi, A. (2022). Unraveling the Temporal Importance of Community-Scale Human Activity Features for Rapid Assessment of Flood Impacts. IEEE Access, 10, 1138–1150. doi:10.1109/access.2021.3137651.
[100] DiStasi, M. R., & Ley, K. (2009). Opening the flood-gates: how neutrophil-endothelial interactions regulate permeability. Trends in Immunology, 30(11), 547–556. doi:10.1016/j.it.2009.07.012.
[101] Hu, M., Zhang, X., Siu, Y., Li, Y., Tanaka, K., Yang, H., & Xu, Y. (2018). Flood Mitigation by Permeable Pavements in Chinese Sponge City Construction. Water, 10(2), 172. doi:10.3390/w10020172.
[102] Warhurst, J. R., Parks, K. E., McCulloch, L., & Hudson, M. D. (2014). Front gardens to car parks: Changes in garden permeability and effects on flood regulation. Science of The Total Environment, 485–486, 329–339. doi:10.1016/j.scitotenv.2014.03.035.
[103] Towfiqul Islam, A. R. M., Talukdar, S., Mahato, S., Kundu, S., Eibek, K. U., Pham, Q. B., Kuriqi, A., & Linh, N. T. T. (2021). Flood susceptibility modelling using advanced ensemble machine learning models. Geoscience Frontiers, 12(3), 101075. doi:10.1016/j.gsf.2020.09.006.
[104] Pham, B. T., Jaafari, A., Phong, T. V., Yen, H. P. H., Tuyen, T. T., Luong, V. V., Nguyen, H. D., Le, H. V., & Foong, L. K. (2021). Improved flood susceptibility mapping using a best first decision tree integrated with ensemble learning techniques. Geoscience Frontiers, 12(3), 101105. doi:10.1016/j.gsf.2020.11.003.
[105] Sellami, E. M., & Rhinane, H. (2024). Google Earth Engine and Machine Learning for Flash Flood Exposure Mapping—Case Study: Tetouan, Morocco. Geosciences, 14(6), 152. doi:10.3390/geosciences14060152.
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.![]()








