Enhancing Durability in Recycled Concrete: Investigating Chloride Permeability with Recycled Aggregates and Plastic Waste
Downloads
This study investigates the effects of substituting fine aggregates with recycled plastic in recycled concrete, focusing on chloride penetration, compressive strength, workability, and porosity. Recycled plastic was incorporated at 10% (A10) and 20% (A20) by volume, and properties were evaluated across six mix designs. The control mix without plastic (Mix A) achieved the highest 28-day compressive strength (400 KSC), while A10 and A20 showed reduced strengths of 320 and 255 KSC, respectively. The addition of plastic increased mix porosity, resulting in reduced strength and workability due to diminished cement bonding and lubrication. Chloride ingress was assessed under cyclic wetting–drying exposure using a 3.5% NaCl solution. Results revealed progressive surface chloride accumulation over time. Notably, Mix A showed a 137.96% increase in chloride content at a 0–2 cm depth after 280 days, with Mix A20 exhibiting even higher surface concentrations. Chloride content consistently decreased beyond a 4 cm depth, indicating limited long-term penetration into inner layers. These findings highlight the importance of porosity control in mitigating chloride transport in recycled concrete. A clear relationship between plastic content, increased porosity, and enhanced chloride diffusion was observed. While 10% plastic substitution demonstrated acceptable performance, higher levels significantly compromised durability. The study recommends limiting plastic waste incorporation to 10% by volume and maintaining a concrete cover of at least 8–10 cm over reinforcement to enhance resistance against chloride-induced corrosion. These findings support the controlled reuse of plastic waste in sustainable concrete development, particularly for non-structural or low-exposure applications. Optimizing mix design and incorporating supplementary cementitious materials are suggested to improve long-term durability.
Downloads
[1] Xu, Y., Gao, Y., Yu, H., Ma, H., Xu, M., Xu, Z., & Feng, T. (2023). Time variation law of chlorine diffusion coefficient of marine concrete structures in tidal zone and its influence on service life. Journal of Building Engineering, 76. doi:10.1016/j.jobe.2023.107379.
[2] Shetty, M.S. (2013). Concrete Technology Theory and Practice. Chand (S.) Publishing, New Delhi, India.
[3] Kasikitwiwat, P., & Jantarachot, K. (2021). Comparative study of fatigue of asphalt concrete mixed with AC 60-70 and polymer modified asphalt binder. Science & Technology Asia, 39-49. (In Thai).
[4] Barbhuiya, S., Kanavaris, F., Das, B. B., & Idrees, M. (2024). Decarbonising cement and concrete production: Strategies, challenges and pathways for sustainable development. Journal of Building Engineering, 86, 108861. doi:10.1016/j.jobe.2024.108861.
[5] Watari, T., Cao, Z., Hata, S., & Nansai, K. (2022). Efficient use of cement and concrete to reduce reliance on supply-side technologies for net-zero emissions. Nature Communications, 13(1), 4158. doi:10.1038/s41467-022-31806-2.
[6] Griffiths, S., Sovacool, B. K., Furszyfer Del Rio, D. D., Foley, A. M., Bazilian, M. D., Kim, J., & Uratani, J. M. (2023). Decarbonizing the cement and concrete industry: A systematic review of socio-technical systems, technological innovations, and policy options. Renewable and Sustainable Energy Reviews, 180, 113291. doi:10.1016/j.rser.2023.113291.
[7] Dobrucali, E. (2024). Relationship between CO2 Emissions from Concrete Production and Economic Growth in 20 OECD Countries. Buildings, 14(9), 2709. doi:10.3390/buildings14092709.
[8] Florea, M. V. A., & Brouwers, H. J. H. (2013). Properties of various size fractions of crushed concrete related to process conditions and re-use. Cement and Concrete Research, 52, 11–21. doi:10.1016/j.cemconres.2013.05.005.
[9] Güneyisi, E., Gesoǧlu, M., Algin, Z., & Yazici, H. (2014). Effect of surface treatment methods on the properties of self-compacting concrete with recycled aggregates. Construction and Building Materials, 64, 172–183. doi:10.1016/j.conbuildmat.2014.04.090.
[10] Zhang, H., Geng, Y., Wang, Y. Y., & Wang, Q. (2020). Long-term behavior of continuous composite slabs made with 100% fine and coarse recycled aggregate. Engineering Structures, 212. doi:10.1016/j.engstruct.2020.110464.
[11] Borrelle, S. B., Ringma, J., Lavender Law, K., Monnahan, C. C., Lebreton, L., McGivern, A., Murphy, E., Jambeck, J., Leonard, G. H., Hilleary, M. A., Eriksen, M., Possingham, H. P., De Frond, H., Gerber, L. R., Polidoro, B., Tahir, A., Bernard, M., Mallos, N., Barnes, M., & Rochman, C. M. (2020). Predicted growth in plastic waste exceeds efforts to mitigate plastic pollution. Science, 369(6509), 1515–1518. doi:10.1126/SCIENCE.ABA3656.
[12] Lim, J., Ahn, Y., & Kim, J. (2023). Optimal sorting and recycling of plastic waste as a renewable energy resource considering economic feasibility and environmental pollution. Process Safety and Environmental Protection, 169, 685–696. doi:10.1016/j.psep.2022.11.027.
[13] Vieira, O., Ribeiro, R. S., Diaz de Tuesta, J. L., Gomes, H. T., & Silva, A. M. T. (2022). A systematic literature review on the conversion of plastic wastes into valuable 2D graphene-based materials. Chemical Engineering Journal, 428. doi:10.1016/j.cej.2021.131399.
[14] Wu, J., Ye, X., & Cui, H. (2025). Recycled Materials in Construction: Trends, Status, and Future of Research. Sustainability, 17(6), 2636. doi:10.3390/su17062636.
[15] Babafemi, A. J., Šavija, B., Paul, S. C., & Anggraini, V. (2018). Engineering Properties of Concrete with Waste Recycled Plastic: A Review. Sustainability, 10(11), 3875. doi:10.3390/su10113875.
[16] Magbool, H. M. (2025). Sustainability of utilizing recycled plastic fiber in green concrete: A systematic review. Case Studies in Construction Materials, 22, e04432. doi:10.1016/j.cscm.2025.e04432.
[17] Qader, D. N., Merie, H. D., & Abdulhaleem, K. N. (2025). Impact of incorporating plastic fibers, walnut shells, and tire rubber fibers on the mechanical properties of concrete. Electronic Journal of Structural Engineering, 25(1), 19-24. doi:10.56748/ejse.24738.
[18] Saadeh, M., & Irshidat, M. R. (2024). Recent advances in concrete-filled fiber-reinforced polymer tubes: a systematic review and future directions. Innovative Infrastructure Solutions, 9(11), 406. doi:10.1007/s41062-024-01722-z.
[19] Beshkari, M., Amani, B., Rahmati, K., Mohtasham Moein, M., Saradar, A., & Karakouzian, M. (2024). Synergistic effects of pozzolan and carbon fibers on the performance of self-consolidating concrete under plastic shrinkage and dynamic loading. Innovative Infrastructure Solutions, 9(5), 160. doi:10.1007/s41062-024-01440-6.
[20] Jin, H., Liu, J., Zhong, D., & Tang, L. (2023). Experimental study on chloride ion diffusion behavior and microstructure in concrete under alternating ambient humidity conditions. Construction and Building Materials, 401, 132886. doi:10.1016/j.conbuildmat.2023.132886.
[21] Li, D., Li, P., & Li, L. yuan. (2023). Chloride penetration in concrete with trilinear binding isotherm. Journal of Building Engineering, 77, 107534. doi:10.1016/j.jobe.2023.107534.
[22] Wang, Y., Liao, J., & Zhang, B. (2024). A Review of Chloride Penetration of Recycled Concrete with Enhancement Treatment and Service Life Prediction. Materials, 17(6), 1349. doi:10.3390/ma17061349.
[23] Fanara, A., Courard, L., & Collin, F. (2024). Numerical FE2 study of chloride ingress in unsaturated recycled aggregates concrete. Cement and Concrete Research, 186, 107703. doi:10.1016/j.cemconres.2024.107703.
[24] Li, L., Xuan, D., Sojobi, A. O., Liu, S., & Poon, C. S. (2021). Efficiencies of carbonation and nano silica treatment methods in enhancing the performance of recycled aggregate concrete. Construction and Building Materials, 308, 125080. doi:10.1016/j.conbuildmat.2021.125080.
[25] Sasanipour, H., Aslani, F., & Taherinezhad, J. (2021). Chloride ion permeability improvement of recycled aggregate concrete using pretreated recycled aggregates by silica fume slurry. Construction and Building Materials, 270, 121498. doi:10.1016/j.conbuildmat.2020.121498.
[26] Chen, C., Wang, L., Liu, R., Yu, J., Liu, H., & Wu, J. (2023). Chloride Penetration of Recycled Fine Aggregate Concrete under Drying–Wetting Cycles. Materials, 16(3), 1306. doi:10.3390/ma16031306.
[27] Limbachiya, M. C., Leelawat, T., & Dhir, R. K. (2000). Use of recycled concrete aggregate in high-strength concrete. Materials and Structures, 33(9), 574–580. doi:10.1007/bf02480538.
[28] Dehestani, A., Hosseini, M., & Taleb Beydokhti, A. (2020). Effect of wetting–drying cycles on mode I and mode II fracture toughness of cement mortar and concrete. Theoretical and Applied Fracture Mechanics, 106, 102448. doi:10.1016/j.tafmec.2019.102448.
[29] Zuo, S., Xiao, J., & Yuan, Q. (2020). Comparative study on the new-old mortar interface deterioration after wet-dry cycles and heat-cool cycles. Construction and Building Materials, 244, 118374. doi:10.1016/j.conbuildmat.2020.118374.
[30] Wang, J., Zhang, J., & Cao, D. (2021). Pore characteristics of recycled aggregate concrete and its relationship with durability under complex environmental factors. Construction and Building Materials, 272, 121642. doi:10.1016/j.conbuildmat.2020.121642.
[31] Sun, R., Hu, X., Ling, Y., Zuo, Z., Zhuang, P., & Wang, F. (2020). Chloride diffusion behavior of engineered cementitious composite under dry-wet cycles. Construction and Building Materials, 260, 119943. doi:10.1016/j.conbuildmat.2020.119943.
[32] Ismail, S., & Ramli, M. (2014). Mechanical strength and drying shrinkage properties of concrete containing treated coarse recycled concrete aggregates. Construction and Building Materials, 68, 726–739. doi:10.1016/j.conbuildmat.2014.06.058.
[33] TIS 1746-2545 (2002). Ammonium nitrate for anfo explosive. Thai Industrial Standards Institute (TISI), Bangkok, Thailand. (In Thai).
[34] Janpetch, N., Trakolkul, C., Plitsiri, I., & Thepjunthra, W. (2024). Unfired Bricks Mixed with Para Rubber Latex for Sustainable Construction Materials. Civil Engineering Journal (Iran), 10(12), 3892–3910. doi:10.28991/CEJ-2024-010-12-05.
[35] ASTM C131/C131M-20. (2020). Standard Test Method for Resistance to Degradation of Small-Size Coarse Aggregate by Abrasion and Impact in the Los Angeles Machine. ASTM International. Pennsylvania, United States. doi:10.1520/C0131_C0131M-20
[36] BS 812. (1995). Methods for Sampling and Testing of Mineral Aggregates, Sands and Fillers. British Standard Institution, London, United Kingdom.
[37] ASTM C29/C29M-23. (2023). Standard Test Method for Bulk Density (“Unit Weight”) and Voids in Aggregate. ASTM International. Pennsylvania, United States. doi:10.1520/C0029_C0029M-23.
[38] ASTM C88-13. (2018). Standard Test Method for Soundness of Aggregates by Use of Sodium Sulfate or Magnesium Sulfate. ASTM International. Pennsylvania, United States. doi:10.1520/C0088-13.
[39] Jantarachot, K., Yodsudjai, W., Nokkaew, N., & Prayongphan, S. (2023). Compressive Strength of Recycled Aggregated Concrete from Concrete Waste and Plastic Waste. GEOMATE Journal, 25(108), 72-80. doi:10.21660/2023.108.3857.
[40] BS EN 12390-3: 2019. (2019). Testing Hardened Concrete. Compressive Strength of Test Specimens. British Standards Institution, London, United Kingdom.
[41] BS EN 12350‑2:2019. (2019). Testing fresh concrete - Slump-test. British Standards Institution, London, United Kingdom.
[42] BS 1881-122:2011+A1:2020. (2020). Testing Concrete Method for Determination of Water Absorption. British Standards Institution, London, United Kingdom.
[43] Ju, X., Wu, L., Lin, C., Yang, X., & Yang, C. (2021). Prediction of chloride concentration with elevation in concrete exposed to cyclic drying-wetting conditions in marine environments. Construction and Building Materials, 278. doi:10.1016/j.conbuildmat.2021.122370.
[44] Wu, J., Diao, B., Cao, Y., Zhong, J., & Shi, X. (2020). Chloride concentration distributions in fatigue damaged RC beams revealed by energy-dispersive X-ray spectroscopy. Construction and Building Materials, 234, 117396. doi:10.1016/j.conbuildmat.2019.117396.
[45] Wang, Y., Li, Q., & Lin, C. (2016). Chloride Diffusion Analysis of Concrete Members Considering Depth-Dependent Diffusion Coefficients and Effect of Reinforcement Presence. Journal of Materials in Civil Engineering, 28(5), 4015183. doi:10.1061/(asce)mt.1943-5533.0001425.
[46] Xu, C., Li, Z., Jin, W., Zhang, Y., & Yao, C. (2012). Chloride ion ingress distribution within an alternate wetting-drying marine environment area. Science China Technological Sciences, 55(4), 970–976. doi:10.1007/s11431-011-4733-1.
[47] Ye, H., Jin, X., Fu, C., Jin, N., Xu, Y., & Huang, T. (2016). Chloride penetration in concrete exposed to cyclic drying-wetting and carbonation. Construction and Building Materials, 112, 457–463. doi:10.1016/j.conbuildmat.2016.02.194.
[48] Ben Fraj, A., Bonnet, S., & Khelidj, A. (2012). New approach for coupled chloride/moisture transport in non-saturated concrete with and without slag. Construction and Building Materials, 35, 761–771. doi:10.1016/j.conbuildmat.2012.04.106.
[49] Sun, C., Yuan, L., Zhai, X., Qu, F., Li, Y., & Hou, B. (2018). Numerical and experimental study of moisture and chloride transport in unsaturated concrete. Construction and Building Materials, 189, 1067–1075. doi:10.1016/j.conbuildmat.2018.08.158.
[50] Zhou, C. (2014). Predicting water permeability and relative gas permeability of unsaturated cement-based material from hydraulic diffusivity. Cement and Concrete Research, 58, 143–151. doi:10.1016/j.cemconres.2014.01.016.
[51] Ambrose, E. E., Okafor, F. O., & Onyia, M. E. (2021). Compressive strength and Scheffe’s optimization of mechanical properties of recycled ceramics tile aggregate concrete. Epitoanyag - Journal of Silicate Based and Composite Materials, 73(3), 91–102. doi:10.14382/epitoanyag-jsbcm.2021.14.
[52] Alves, A. V., Vieira, T. F., De Brito, J., & Correia, J. R. (2014). Mechanical properties of structural concrete with fine recycled ceramic aggregates. Construction and Building Materials, 64, 103–113. doi:10.1016/j.conbuildmat.2014.04.037.
[53] Elçi, H. (2016). Utilisation of crushed floor and wall tile wastes as aggregate in concrete production. Journal of Cleaner Production, 112, 742–752. doi:10.1016/j.jclepro.2015.07.003.
[54] Kang, X., Tong, X. Y., Chen, R. P., & Chen, Y. Q. (2024). Effect of ITZ on chloride ion transport in recycled aggregate concrete: Analytical and numerical studies. Journal of Building Engineering, 83, 108443. doi:10.1016/j.jobe.2024.108443.
[55] Du, T., Xiao, J., Li, C., Gan, Y., & Jiang, X. (2024). Experimental and numerical study on the chloride ions penetration in recycled aggregate concrete. Construction and Building Materials, 451. doi:10.1016/j.conbuildmat.2024.138702.
[56] de Almeida Ferreira, I. C., Paciornik, S., & de Andrade Silva, F. (2024). Microstructural investigation of concretes with recycled aggregates using X-ray microtomography. Journal of Building Engineering, 84, 108487. doi:10.1016/j.jobe.2024.108487.
[57] Cheng, Y.-H., Zhu, B.-L., Yang, S.-H., & Tong, B.-Q. (2021). Design of Concrete Mix Proportion Based on Particle Packing Voidage and Test Research on Compressive Strength and Elastic Modulus of Concrete. Materials, 14(3), 623. doi:10.3390/ma14030623.
[58] BS EN 206:2013. (2013). Concrete – Specification, performance, production and conformity. British Standards Institution, London, United Kingdom.
[59] ACI 318R-19. (2019). Building Code Requirements for Structural Concrete and Commentary. American Concrete Institute (ACI), Michigan, United States.
[60] El-Hassan, H., El-Dieb, A., El-Mir, A., Alzamly, A., & Aly Hassan, A. (2024). Enhancing the chloride ion penetration resistance of concrete using metal-organic frameworks. Case Studies in Construction Materials, 21. doi:10.1016/j.cscm.2024.e03463.
[61] Yang, Q., Wu, Y.-C., Zhi, P., & Zhu, P. (2024). Effect of Micro-cracks on Chloride Ion Diffusion in Concrete Based on Stochastic Aggregate Approach. doi:10.20944/preprints202404.0775.v1.
[62] Amin, M. T. E., Sarker, P. K., Shaikh, F. U. A., & Hosan, A. (2025). Chloride permeability and chloride-induced corrosion of concrete containing lithium slag as a supplementary cementitious material. Construction and Building Materials, 471. doi:10.1016/j.conbuildmat.2025.140629.
[63] Jiang, H., Wu, L., Guan, L., Liu, M., Ju, X., Xiang, Z., Jiang, X., Li, Y., & Long, J. (2024). Durability life evaluation of marine infrastructures built by using carbonated recycled coarse aggregate concrete due to the chloride corrosive environment. Frontiers in Marine Science, 11. doi:10.3389/fmars.2024.1357186.
[64] Tong, L., Liu, Q., Xiong, Q., Meng, Z., Amiri, O., & Zhang, M. (2024). Modeling the chloride transport in concrete from microstructure generation to chloride diffusivity prediction. Computer-Aided Civil and Infrastructure Engineering, 40(9), 1129–1149. doi:10.1111/mice.13331.
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.