Prediction the Dynamic Modulus of Hot Asphalt Mix Using Genetic Algorithms and Neural Network Modeling
Downloads
The dynamic modulus is a fundamental characteristic of asphalt concrete and expresses the stiffness properties of a hot mix asphalt mixture as a function of temperature and loading rate. This study used artificial neural network modeling and genetic algorithms to evaluate the asphalt concrete dynamic modulus. The experimental database was collected from LTPP DATA that used in the ANN and genetic algorithm development and modeling. The output for the two models was the asphalt concrete dynamic modulus. Moreover, mathematical models were employed to predict the dynamic modulus of asphalt concrete with different parameters. Following the establishment of the model designs, the deficiencies and strengths of the proposed models are evaluated using determination coefficient (R2) values. The evaluation was performed by comparing the dynamic modulus of asphalt concrete predicted from four models with the dynamic modulus obtained from the experimental testing. Notably, the neural network models achieved precise calculations for models 1 and 2, with R2 values of 0.96 and 0.93, respectively. The genetic algorithm models achieved R2 values of 0.73 for model 1 and 0.64 for model 2. The two models, the genetic algorithm model and the artificial neural network model, contributed to the generation of two new empirical equations.
Downloads
[1] NCHRP. (2004). Guide for mechanistic-empirical design of new and rehabilitated pavement structures, national cooperative highway research program. National Cooperative Highway Research Program Transportation Research Board National Research Council, (NCHRP), Washington, D.C., United States.
[2] AASHTO (2008). A Manual of Practice-Interim Edition. American Association of State Highway and Transportation Officials, Washington, D.C., United States.
[3] Ghasemi, P. (2018). Performance evaluation of Coarse-Graded Field Mixtures using Dynamic Modulus Results Gained from Testing in Indirect Tension Mode of Testing. Master Thesis, Iowa State University, Ames, United States.
[4] Birgisson, B., Roque, R., Kim, J., & Pham, L. V. (2004). The use of complex modulus to characterize the performance of asphalt mixtures and pavements in Florida, Final Report, UF Project 4910-4504-784-12, The National Academies of Sciences, Engineering, and Medicine, Keck Center, United States.
[5] Arabali, P., Sakhaeifar, M. S., Freeman, T. J., Wilson, B. T., & Borowiec, J. D. (2017). Decision-Making Guideline for Preservation of Flexible Pavements in General Aviation Airport Management. Journal of Transportation Engineering, Part B: Pavements, 143(2), 4017006. doi:10.1061/jpeodx.0000002.
[6] El-Badawy, S., Abd El-Hakim, R., & Awed, A. (2018). Comparing Artificial Neural Networks with Regression Models for Hot-Mix Asphalt Dynamic Modulus Prediction. Journal of Materials in Civil Engineering, 30(7), 4018128. doi:10.1061/(asce)mt.1943-5533.0002282.
[7] Andrei, D., Mirza, W. and Witczak, M.W. (1999) Development of a Revised Predictive Model for the Dynamic (Complex) Modulus of Asphalt Mixtures. NCHRP Report 1-37A, Washington, D.C., United States.
[8] Bari, J., & Witczak, M. W. (2007). New predictive models for viscosity and complex shear modulus of asphalt binders: for use with mechanistic-empirical pavement design guide. Transportation Research Record, 2001, 9–19. doi:10.3141/2001-02.
[9] Christensen, D. W., Pellinen, T., & Bonaquist, R. F. (2003). Hirsch model for estimating the modulus of asphalt concrete. Asphalt Paving Technology: Association of Asphalt Paving Technologists-Proceedings of the Technical Sessions, 72, 97–121.
[10] Jamrah, A., Kutay, M. E., & Öztürk, H. I. (2014). Characterization of asphalt materials common to Michigan in support of the implementation of the mechanistic-empirical pavement design guide. Transportation Research Record 93rd Annual Meeting Compendium Papers, Kiribati, United States.
[11] Al-Khateeb, G., Shenoy, A., Gibson, N., & Harman, T. (2006). A new simplistic model for dynamic modulus predictions of asphalt paving mixtures. Journal of the Association of Asphalt Paving Technologists, 75.
[12] Sakhaeifar, M. S., Richard Kim, Y., & Garcia Montano, B. E. (2017). Individual temperature based models for nondestructive evaluation of complex moduli in asphalt concrete. Construction and Building Materials, 137, 117–127. doi:10.1016/j.conbuildmat.2016.12.145.
[13] Zhang, C., Ildefonzo, D. G., Shen, S., Wang, L., & Huang, H. (2023). Implementation of ensemble Artificial Neural Network and MEMS wireless sensors for In-Situ asphalt mixture dynamic modulus prediction. Construction and Building Materials, 377, 131118. doi:10.1016/j.conbuildmat.2023.131118.
[14] Huang, J., Zhang, J., Li, X., Qiao, Y., Zhang, R., & Kumar, G. S. (2023). Investigating the effects of ensemble and weight optimization approaches on neural networks’ performance to estimate the dynamic modulus of asphalt concrete. Road Materials and Pavement Design, 24(8), 1939–1959. doi:10.1080/14680629.2022.2112061.
[15] Qiao, J., & Wang, L. (2021). Nonlinear system modeling and application based on restricted Boltzmann machine and improved BP neural network. Applied Intelligence, 51(1), 37-50. doi:10.1007/s10489-019-01614-1.
[16] Amaral, H. F., Urrutia, S., & Hvattum, L. M. (2021). Delayed improvement local search. Journal of Heuristics, 27(5), 923-950. doi:10.1007/s10732-021-09479-9.
[17] Zhang, J., Zhang, J., Cao, D., Ding, Y., & Zhou, W. (2023). Mechanistic analysis of bottom-up crack in asphalt pavement using cohesive zone model. Theoretical and Applied Fracture Mechanics, 125, 103904. doi:10.1016/j.tafmec.2023.103904.
[18] Huang, G., Zhang, J., Hui, B., Zhang, H., Guan, Y., Guo, F., Li, Y., He, Y., & Wang, D. (2023). Analysis of Modulus Properties of High-Modulus Asphalt Mixture and Its New Evaluation Index of Rutting Resistance. Sustainability (Switzerland), 15(9), 7574. doi:10.3390/su15097574.
[19] Behnood, A., & Golafshani, E. M. (2021). Predicting the dynamic modulus of asphalt mixture using machine learning techniques: An application of multi biogeography-based programming. Construction and Building Materials, 266, 120983. doi:10.1016/j.conbuildmat.2020.120983.
[20] Acharjee, P. K., Souliman, M. I., Freyle, F., & Fuentes, L. (2024). Development of Dynamic Modulus Prediction Model Using Artificial Neural Networks for Colombian Mixtures. Journal of Transportation Engineering, Part B: Pavements, 150(1), 4023038. doi:10.1061/jpeodx.pveng-1402.
[21] Wang, D., Luo, C., Li, J., & He, J. (2024). Study on Dynamic Modulus Prediction Model of In-Service Asphalt Pavement. Buildings, 14(8), 2550. doi:10.3390/buildings14082550.
[22] Uwanuakwa, I. D., Amir, I. Y., & Umba, L. N. (2024). Enhanced asphalt dynamic modulus prediction: A detailed analysis of artificial hummingbird algorithm-optimised boosted trees. Journal of Road Engineering, 4(2), 224–233. doi:10.1016/j.jreng.2024.05.001.
[23] Hu, S., Zhou, N., Steger, R., Bausano, J., Mahmoud, E., & Zhou, F. (2025). Development of the AI-powered ideal-E* test. Road Materials and Pavement Design, 1–25. doi:10.1080/14680629.2025.2498633.
[24] Zeiada, W., Obaid, L., El-Badawy, S., El-Hakim, R. A., & Awed, A. (2025). Benchmarking Classical and Deep Machine Learning Models for Predicting Hot Mix Asphalt Dynamic Modulus. Civil Engineering Journal (Iran), 11(1), 76–106. doi:10.28991/CEJ-2025-011-01-06.
[25] Witczak, M. W., & Fonseca, O. A. (1996). Revised predictive model for dynamic (complex) modulus of asphalt mixtures. Transportation Research Record, 1540, 15–23. doi:10.3141/1540-03.
[26] Mohammad, L. N., Wu, Z., Obulareddy, S., Cooper, S., & Abadie, C. (2006). Permanent deformation analysis of hot-mix asphalt mixtures with simple performance tests and 2002 mechanistic-empirical pavement design software. Transportation Research Record, 1970, 133–142. doi:10.3141/1970-16.
[27] Georgouli, K., Loizos, A., & Plati, C. (2016). Calibration of dynamic modulus predictive model. Construction and Building Materials, 102, 65–75. doi:10.1016/j.conbuildmat.2015.10.163.
[28] Yousefdoost, S., Vuong, B., Rickards, I., Armstrong, P., & Sullivan, B. (2013). Evaluation of Dynamic Modulus Predictive Models for Typical Australian Asphalt Mixes. 15th AAPA International Flexible Pavements Conference, 19, 1–18.
[29] Wang, H., Al-Qadi, I. L., Faheem, A. F., Bahia, H. U., Yang, S. H., & Reinke, G. H. (2011). Effect of mineral filler characteristics on asphalt mastic and mixture rutting potential. Transportation Research Record, 2208(2208), 33–39. doi:10.3141/2208-05.
[30] Far, M. S. S. (2011). Development of New dynamic modulus (E*) predictive models for Hot Mix asphalt mixtures. Ph.D. Thesis, North Carolina State University, Raleigh, United States.
[31] Ahmad, S., Parvez, M., Khan, T. A., & Khan, O. (2022). A hybrid approach using AHP–TOPSIS methods for ranking of soft computing techniques based on their attributes for prediction of solar radiation. Environmental Challenges, 9, 100634. doi:10.1016/j.envc.2022.100634.
[32] Aneke, F. I., Onyelowe, K. C., & Ebid, A. M. (2024). AI-Based Estimation of Swelling Stress for Soils in South Africa. Transportation Infrastructure Geotechnology, 11(3), 1049–1072. doi:10.1007/s40515-023-00311-4.
[33] Aneke, F. I., Onyelowe, K. C., Ebid, A. M., Nwobia, L. I., & Adu, J. T. (2022). Predictive models of swelling stress—a comparative study between BP- and GRG-ANN. Arabian Journal of Geosciences, 15(17). doi:10.1007/s12517-022-10706-1.
[34] Onyelowe, K. C., Aneke, F. I., Onyia, M. E., Ebid, A. M., & Usungedo, T. (2023). AI (ANN, GP, and EPR)-based predictive models of bulk density, linear-volumetric shrinkage & desiccation cracking of HSDA-treated black cotton soil for sustainable subgrade. Geomechanics and Geoengineering, 18(6), 497–516. doi:10.1080/17486025.2022.2090621.
[35] Hanandeh, S., Ardah, A., & Abu-Farsakh, M. (2020). Using artificial neural network and genetics algorithm to estimate the resilient modulus for stabilized subgrade and propose new empirical formula. Transportation Geotechnics, 24. doi:10.1016/j.trgeo.2020.100358.
[36] Ikechukwu, A. F., & Mostafa, M. M. H. (2022). Swelling Pressure Prediction of Compacted Unsaturated Expansive Soils. International Journal of Engineering Research in Africa, 59, 119–134. doi:10.4028/p-eq1419.
[37] Kennedy, E. H. (2024). Semiparametric Doubly Robust Targeted Double Machine Learning: A Review. Handbook of Statistical Methods for Precision Medicine, 207–236. doi:10.1201/9781003216223-10.
[38] Onyelowe, K. C., Kontoni, D. P. N., Ebid, A. M., Dabbaghi, F., Soleymani, A., Jahangir, H., & Nehdi, M. L. (2022). Multi-Objective Optimization of Sustainable Concrete Containing Fly Ash Based on Environmental and Mechanical Considerations. Buildings, 12(7), 948. doi:10.3390/buildings12070948.
[39] Onyelowe, K. C., Mojtahedi, F. F., Azizi, S., Mahdi, H. A., Sujatha, E. R., Ebid, A. M., Darzi, A. G., & Aneke, F. I. (2022). Innovative Overview of SWRC Application in Modeling Geotechnical Engineering Problems. Designs, 6(5), 69. doi:10.3390/designs6050069.
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.