Sustainable Utilization of Recycled Concrete Powder as Sand Replacement in Cement Mortar Production: Impact of Sand-Cement Ratio
Downloads
The construction industry is becoming more interested in recycled concrete sand obtained from concrete waste due to the urgent need for environmentally friendly building materials. This research investigates the mechanical along durability properties of cement mortars made of recycled concrete sand as a full replacement of natural sand. With a fixed water-to-cement ratio of 0.48, five values of sand-to-cement ratio, including 0.50, 1.00, 1.50, 2.00, and 2.75, were used to prepare different mortar mixes to investigate its effect on the behavior of the mortar. Results indicate a decline in workability with an increasing sand-to-cement ratio, with flow values ranging from 137% at a sand-to-cement ratio of 0.5 to 58% at a sand-to-cement ratio of 2.75. The highest compressive strength of 40.3 MPa was observed in the mix with a sand-to-cement ratio of 0.5 at 28 days, while the mix with a sand-to-cement ratio of 2.75 exhibited the lowest strength at 29.8 MPa, attributed to higher internal porosity. The mix of sand to cement of 1.5 demonstrated a balanced performance, achieving a compressive strength of 29.8 MPa and a flow value of 110 ± 5%, making it suitable for practical applications. Water absorption increased with higher sand-to-cement ratios, consistent with increased void content. Microstructural analysis revealed the presence of residual cementitious phases such as belite and calcium hydroxide in recycled concrete sand, contributing to secondary hydration and influencing durability characteristics. Although mortars containing natural sand outperformed recycled concrete sand-based mixtures in strength and workability, recycled concrete sand mortars met the required performance criteria for building, plastering, and non-structural applications. This study supports the viability of recycled concrete sand as a sustainable alternative to natural sand, contributing to resource conservation and waste reduction in the construction industry.
Downloads
[1] Alarab, M. A., Alattieh, S. A., Zeiada, W., Al-Khateeb, G. G., Al-Toubat, S., & Abdulla, F. (2024). Performance of Cement Mortar Mixtures Containing Fine Aggregate and Admixtures. Materials Science Forum, 1142, 85–96. doi:10.4028/p-N1m8xa.
[2] Zhang, Z., Feng, Q., Zhu, W., Lin, X., Chen, K., Yin, W., & Lu, C. (2021). Influence of sand-cement ratio and polycarboxylate superplasticizer on the basic properties of mortar based on water film thickness. Materials, 14(17), 4850. doi:10.3390/ma14174850.
[3] Lu, L., Zhang, R., & Zhang, Y. (2022). Experimental Study of Cement Mortar on Compressive Strength and Wave Velocity Characteristics for Different Sand/Cement Ratio and Particle Sizes. Key Engineering Materials, 931, 199–204. doi:10.4028/p-dlhef1.
[4] Wang, Y., Liu, S., Wang, W., & Zhao, Y. (2011). Influence of species of manufactured sand on basic performances of mortar. Advanced Materials Research, 306–307, 980–983. doi:10.4028/www.scientific.net/AMR.306-307.980.
[5] ASTM C270-25a. (2007). Standard Specification for Mortar for Unit Masonry. ASTM International, Pennsylvania, United States. doi:10.1520/C0270-25A
[6] Bu, J., Tian, Z., Zheng, S., & Tang, Z. (2017). Effect of sand content on strength and pore structure of cement mortar. Journal Wuhan University of Technology, Materials Science Edition, 32(2), 382–390. doi:10.1007/s11595-017-1607-9.
[7] Mollo, L. (2015). Influence of cement/sand ratio on behavior of cement mortar. Journal of Engineering, Design and Technology, 13(1), 23–36. doi:10.1108/JEDT-07-2012-0031.
[8] De Larrard, F., & Belloc, A. (1997). The influence of aggregate on the compressive strength of normal and high-strength concrete. Materials Journal, 94(5), 417-426. doi:10.14359/326.
[9] Stock, A. F., Hannantt, D. J., & Williams, R. I. T. (1979). The effect of aggregate concentration upon the strength and modulus of elasticity of concrete. Magazine of Concrete Research, 31(109), 225–234. doi:10.1680/macr.1979.31.109.225.
[10] Yang, C. C., & Huang, R. (1998). Approximate strength of lightweight aggregate using micromechanics method. Advanced Cement Based Materials, 7(3–4), 133–138. doi:10.1016/S1065-7355(98)00002-9.
[11] Fu, T. C., Yeih, W., Chang, J. J., & Huang, R. (2014). The Influence of Aggregate Size and Binder Material on the Properties of Pervious Concrete. Advances in Materials Science and Engineering, 2014, 1–17. doi:10.1155/2014/963971.
[12] Perry, C., & Gillott, J. E. (1977). The influence of mortar-aggregate bond strength on the behaviour of concrete in uniaxial compression. Cement and Concrete Research, 7(5), 553–564. doi:10.1016/0008-8846(77)90117-X.
[13] Chen, H. J., Yen, T., Lia, T. P., & Huang, Y. L. (1999). Determination of the dividing strength and its relation to the concrete strength in lightweight aggregate concrete. Cement and Concrete Composites, 21(1), 29–37. doi:10.1016/S0958-9465(98)00035-3.
[14] Badr, N., Irshidat, M. R., & Maglad, O. (2024). Utilizing Recycled Sand from Excavation Wastes for Sustainable Cement Mortar Production. Civil Engineering Journal (Iran), 10(6), 1909–1921. doi:10.28991/CEJ-2024-010-06-012.
[15] Garg, N., & Shrivastava, S. (2023). Mechanical, durability and sustainability assessment of rendering mortar with synergistic utilisation of recycled concrete and ceramic insulator fine aggregates. Journal of Building Engineering, 76, 107269. doi:10.1016/j.jobe.2023.107269.
[16] Rifa, A., Subhani, S. M., Bahurudeen, A., & Santhosh, K. G. (2023). A systematic comparison of performance of recycled concrete fine aggregates with other alternative fine aggregates: An approach to find a sustainable alternative to river sand. Journal of Building Engineering, 78, 107695. doi:10.1016/j.jobe.2023.107695.
[17] Naresh, D., UshaLakshmi, N., Pavani reddy, Y., Sravya M., Sushitha Sai, G. (2023). An Experimental Study on Partial Replacement of Fine Aggregates with M-sand. International Journal for Multidisciplinary Research, 5(2), 2457. doi:10.36948/ijfmr.2023.v05i02.2457
[18] Güneş, M., Yücel, H. E., & Öz, H. Ö. (2022). Investigation with SEM/EDX, XRD, TGA/DTA and FTIR analyses from a new point of view of the effects on cement mortars of different curing conditions and design parameters. Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi. doi:10.28948/ngumuh.1051296.
[19] Jiang, Y., Li, B., Liu, S., He, J., & Hernandez, A. G. (2022). Role of recycled concrete powder as sand replacement in the properties of cement mortar. Journal of Cleaner Production, 371, 133424. doi:10.1016/j.jclepro.2022.133424.
[20] Vegas, I., Azkarate, I., Juarrero, A., & Frías, M. (2009). Design and performance of masonry mortars made with recycled aggregates from concrete rubble. Materiales de Construccion, 59(295), 5–18. doi:10.3989/mc.2009.44207.
[21] Martínez, I., Etxeberria, M., Pavón, E., & Díaz, N. (2018). Influence of Demolition Waste Fine Particles on the Properties of Recycled Aggregate Masonry Mortar. International Journal of Civil Engineering, 16(9), 1213–1226. doi:10.1007/s40999-017-0280-x.
[22] Cuenca-Moyano, G. M., Martín-Pascual, J., Martín-Morales, M., Valverde-Palacios, I., & Zamorano, M. (2020). Effects of water to cement ratio, recycled fine aggregate and air entraining/plasticizer admixture on masonry mortar properties. Construction and Building Materials, 230(116929). doi:10.1016/j.conbuildmat.2019.116929.
[23] Tsega, W. T., Yehualaw, M. D., Yifru, B. W., & Nebiyu, W. M. (2025). Partial Replacement of Sand with Recycled Concrete Fine Aggregate and Steel Slag in Cement Mortar. In Sustainable Development Research in Materials and Renewable Energy Engineering: Advancements of Science and Technology, 11-25. doi:10.1007/978-3-031-81730-4_2.
[24] Raeis Samiei, R., Daniotti, B., Pelosato, R., & Dotelli, G. (2015). Properties of cement-lime mortars vs. cement mortars containing recycled concrete aggregates. Construction and Building Materials, 84, 84–94. doi:10.1016/j.conbuildmat.2015.03.042.
[25] Silva, R. V., De Brito, J., & Dhir, R. K. (2016). Performance of cementitious renderings and masonry mortars containing recycled aggregates from construction and demolition wastes. Construction and Building Materials, 105, 400–415. doi:10.1016/j.conbuildmat.2015.12.171.
[26] Evangelista, L., Guedes, M., De Brito, J., Ferro, A. C., & Pereira, M. F. (2015). Physical, chemical and mineralogical properties of fine recycled aggregates made from concrete waste. Construction and Building Materials, 86, 178–188. doi:10.1016/j.conbuildmat.2015.03.112.
[27] Poon, C. S., & Kou, S. C. (2010). Properties of cementitious rendering mortar prepared with recycled fine aggregates. Journal Wuhan University of Technology, Materials Science Edition, 25(6), 1053–1056. doi:10.1007/s11595-010-0148-2.
[28] Zega, C. J., & Di Maio, Á. A. (2011). Use of recycled fine aggregate in concretes with durable requirements. Waste Management, 31(11), 2336–2340. doi:10.1016/j.wasman.2011.06.011.
[29] Aattache, A., & Soltani, R. (2020). Durability-related properties of early-age and long-term resistant laboratory elaborated polymer-based repair mortars. Construction and Building Materials, 235, 117494. doi:10.1016/j.conbuildmat.2019.117494.
[30] Bogas, J. A., De Brito, J., & Ramos, D. (2016). Freeze-thaw resistance of concrete produced with fine recycled concrete aggregates. Journal of Cleaner Production, 115, 294–306. doi:10.1016/j.jclepro.2015.12.065.
[31] Los Santos-Ortega, J., Fraile-García, E., & Ferreiro-Cabello, J. (2024). Environmental and Economic Viability of Using Concrete Block Wastes from a Concrete Production Plant as Recycled Coarse Aggregates. Materials, 17(7), 1560. doi:10.3390/ma17071560.
[32] Roque, S., Maia Pederneiras, C., Brazão Farinha, C., de Brito, J., & Veiga, R. (2020). Concrete-Based and Mixed Waste Aggregates in Rendering Mortars. Materials, 13(8), 1976. doi:10.3390/ma13081976.
[33] Jesus, S., Maia, C., Brazão Farinha, C., de Brito, J., & Veiga, R. (2019). Rendering mortars with incorporation of very fine aggregates from construction and demolition waste. Construction and Building Materials, 229, 116844. doi:10.1016/j.conbuildmat.2019.116844.
[34] Debieb, F., Courard, L., Kenai, S., & Degeimbre, R. (2010). Mechanical and durability properties of concrete using contaminated recycled aggregates. Cement and Concrete Composites, 32(6), 421–426. doi:10.1016/j.cemconcomp.2010.03.004.
[35] Khatib, J. M. (2005). Properties of concrete incorporating fine recycled aggregate. Cement and Concrete Research, 35(4), 763–769. doi:10.1016/j.cemconres.2004.06.017.
[36] Zhang, J., Shi, C., Li, Y., Pan, X., Poon, C. S., & Xie, Z. (2015). Influence of carbonated recycled concrete aggregate on properties of cement mortar. Construction and Building Materials, 98, 1–7. doi:10.1016/j.conbuildmat.2015.08.087.
[37] Mardani-Aghabaglou, A., Yüksel, C., Beglarigale, A., & Ramyar, K. (2019). Improving the mechanical and durability performance of recycled concrete aggregate-bearing mortar mixtures by using binary and ternary cementitious systems. Construction and Building Materials, 196, 295–306. doi:10.1016/j.conbuildmat.2018.11.124.
[38] Kępniak, M., & Łukowski, P. (2024). Multicriteria Analysis of Cement Mortar with Recycled Sand. Sustainability (Switzerland), 16(5), 1773. doi:10.3390/su16051773.
[39] Nedeljković, M., Visser, J., Šavija, B., Valcke, S., & Schlangen, E. (2021). Use of fine recycled concrete aggregates in concrete: A critical review. Journal of Building Engineering, 38, 102196. doi:10.1016/j.jobe.2021.102196.
[40] Mundra, S., Sindhi, P. R., Chandwani, V., Nagar, R., & Agrawal, V. (2016). Crushed rock sand – An economical and ecological alternative to natural sand to optimize concrete mix. Perspectives in Science, 8, 345–347. doi:10.1016/j.pisc.2016.04.070.
[41] Cortes, D. D., Kim, H. K., Palomino, A. M., & Santamarina, J. C. (2008). Rheological and mechanical properties of mortars prepared with natural and manufactured sands. Cement and Concrete Research, 38(10), 1142–1147. doi:10.1016/j.cemconres.2008.03.020.
[42] Bhoopathy, V., & Subramanian, S. S. (2022). The way forward to sustain environmental quality through sustainable sand mining and the use of manufactured sand as an alternative to natural sand. Environmental Science and Pollution Research, 29(21), 30793–30801. doi:10.1007/s11356-022-19633-w.
[43] Chandru, U., Bahurudeen, A., & Senthilkumar, R. (2023). Systematic comparison of different recycled fine aggregates from construction and demolition wastes in OPC concrete and PPC concrete. Journal of Building Engineering, 75, 106768. doi:10.1016/j.jobe.2023.106768.
[44] Soni, N., & Shukla, D. K. (2021). Analytical study on mechanical properties of concrete containing crushed recycled coarse aggregate as an alternative of natural sand. Construction and Building Materials, 266, 120595. doi:10.1016/j.conbuildmat.2020.120595.
[45] Sivamani, J., & Renganathan, N. T. (2021). Effect of fine recycled aggregate on the strength and durability properties of concrete modified through two-stage mixing approach. Environmental Science and Pollution Research, 29(57), 85869–85882. doi:10.1007/s11356-021-14420-5.
[46] Sun, J., Zhang, Z., & Hou, G. (2020). Utilization of fly ash microsphere powder as a mineral admixture of cement: Effects on early hydration and microstructure at different curing temperatures. Powder Technology, 375, 262–270. doi:10.1016/j.powtec.2020.07.084.
[47] Al-Sudani, Z. A., De’nan, F., Al-Zand, A. W., Abd Rahman, N., & Liejy, M. C. (2024). Flexural Performance of a New Composite Double PSSDB Slab System Filled with Recycled Concrete. Civil Engineering Journal, 10(12), 3851–3873. doi:10.28991/CEJ-2024-010-12-03.
[48] Irshidat, M. R., Al-Nuaimi, N., & Rabie, M. (2021). Potential utilization of municipal solid waste incineration ashes as sand replacement for developing sustainable cementitious binder. Construction and Building Materials, 312, 125488. doi:10.1016/j.conbuildmat.2021.125488.
[49] Irshidat, M. R., & Al-Nuaimi, N. (2020). Industrial waste utilization of carbon dust in sustainable cementitious composites production. Materials, 13(15), 3295. doi:10.3390/MA13153295.
[50] Irshidat, M. R., Abdel-Jawad, Y. A., & Al-Sughayer, R. (2018). Feasibility of producing sustainable geopolymer composites made of locally available natural pozzolan. Journal of Material Cycles and Waste Management, 20(3), 1751–1760. doi:10.1007/s10163-018-0742-5.
[51] Irshidat, M. R., Al-Nuaimi, N., & Rabie, M. (2022). Sustainable alkali-activated binders with municipal solid waste incineration ashes as sand or fly ash replacement. Journal of Material Cycles and Waste Management, 24(3), 992–1008. doi:10.1007/s10163-022-01374-0.
[52] Sharma, R., Das, K. K., Pei, J., & Jang, J. G. (2023). Influence of sillimanite sand and corundum sand on the mechanical property, durability and pore structure of cement mortar. Journal of Building Engineering, 80, 108091. doi:10.1016/j.jobe.2023.108091.
[53] Li, Q., Huang, J., Tang, C., Meng, L., Yu, Y., & Wei, K. (2024). A Deep Insight into the Micro-Mechanical Properties of Mortar through a Multi-Phase Model. Buildings, 14(10), 3106. doi:10.3390/buildings14103106.
[54] Mora-Ortiz, R. S., Munguía-Balvanera, E., Díaz, S. A., Magaña-Hernández, F., Del Angel-Meraz, E., & Bolaina-Juárez, Á. (2020). Mechanical Behavior of Masonry Mortars Made with Recycled Mortar Aggregate. Materials, 13(10), 2373. doi:10.3390/ma13102373.
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.