Revolutionizing Self-Healing Asphalt: Optimized Encapsulated Rejuvenators for Enhanced Durability and Sustainability
Downloads
In an era where sustainable infrastructure is crucial, self-healing asphalt emerges as a transformative solution to enhance pavement longevity and reduce maintenance costs, addressing the global challenge of deteriorating road networks. This study presents a pioneering investigation into the development and performance evaluation of encapsulated rejuvenators for self-healing asphalt, utilizing two distinct compositions; waste cooking oil (WCO) and Fischer-Tropsch bright stock oil (FTBSO), across three capsule sizes (1 mm, 2 mm, and 3 mm). Through the experimental tests on compressive strength, thermal stability, and rupture resistance under wet conditions, the ongoing study highlights the critical influence of capsule size and composition on the mechanical performance, as well as the resistance to degradation and oxidation under similar asphalt production conditions, including applied stresses and temperatures. The findings indicate the superior performance of 3 mm FTBSO-based encapsulated rejuvenators, which exhibit exceptional compressive strength (155 N), minimal weight loss (2% at 200° C after 1-hour short-term aging), and high rupture resistance (80 minutes to break under moisture at 100° C), making these capsules ideal for withstanding mechanical and thermal stresses, while ensuring effective crack repair. In addition, both 2 mm and 3 mm FTBSO- and WCO-based rejuvenator capsules demonstrated high resistance to compressive stresses, excellent thermal stability, and strong rupture resistance, making these capsules suitable for self-healing asphalt applications. In contrast, 1 mm WCO-based rejuvenator capsules exhibited the lowest compressive strength (32 N), the highest weight loss (10% after 1 hour of short-term aging at 200° C), and the fastest rupture under moisture (18 minutes to break at 100° C), making these capsules the least suitable for self-healing asphalt applications.
Downloads
[1] Deng, Z., Li, W., Dong, W., Sun, Z., Kodikara, J., & Sheng, D. (2023). Multifunctional asphalt concrete pavement toward smart transport infrastructure: Design, performance and perspective. Composites Part B: Engineering, 265, 110937. doi:10.1016/j.compositesb.2023.110937.
[2] He, Y., Xiong, K., Zhang, J., Guo, F., Li, Y., & Hu, Q. (2024). A state-of-the-art review and prospectives on the self-healing repair technology for asphalt materials. Construction and Building Materials, 421. doi:10.1016/j.conbuildmat.2024.135660.
[3] Hashim, T. M., Nasr, M. S., Jebur, Y. M., Kadhim, A., Alkhafaji, Z., Baig, M. G., Adekunle, S. K., Al-Osta, M. A., Ahmad, S., & Yaseen, Z. M. (2022). Evaluating Rutting Resistance of Rejuvenated Recycled Hot-Mix Asphalt Mixtures Using Different Types of Recycling Agents. Materials, 15(24), 8769. doi:10.3390/ma15248769.
[4] Zhu, C., Huang, C., Zhang, M., Han, Y., & Fang, K. (2022). Rational design of hierarchical zeolite encapsulating FeMnK architecture to enhance light olefins selectivity in Fischer-Tropsch synthesis. Fuel, 309, 122075. doi:10.1016/j.fuel.2021.122075.
[5] Jain, S., & Chandrappa, A. K. (2023). A laboratory investigation on benefits of WCO utilisation in asphalt with high recycled asphalt content: emphasis on rejuvenation and aging. International Journal of Pavement Engineering, 24(1), 2172577. doi:10.1080/10298436.2023.2172577.
[6] Wei, J., Yao, R., Han, Y., Ge, Q., & Sun, J. (2021). Towards the development of the emerging process of CO2heterogenous hydrogenation into high-value unsaturated heavy hydrocarbons. Chemical Society Reviews, 50(19), 10764–10805. doi:10.1039/d1cs00260k.
[7] Zhang, L., Hoff, I., Zhang, X., & Yang, C. (2022). Investigation of the self-healing and rejuvenating properties of aged asphalt mixture containing multi-cavity Ca-alginate capsules. Construction and Building Materials, 361, 129685. doi:10.1016/j.conbuildmat.2022.129685.
[8] Mohamed, A., Zhou, Y., Bertolesi, E., Liu, M., Liao, F., & Fan, M. (2023). Factors influencing self-healing mechanisms of cementitious materials: A review. Construction and Building Materials, 393. doi:10.1016/j.conbuildmat.2023.131550.
[9] Wang, Y., Su, J., Liu, L., Liu, Z., & Sun, G. (2024). Waste cooking oil based capsules for sustainable self-healing asphalt pavement: Encapsulation, characterization and fatigue-healing performance. Construction and Building Materials, 425, 136032. doi:10.1016/j.conbuildmat.2024.136032.
[10] Zghoundi, M. B., & Akkouri, N. (2023). Self-healing Microencapsulation Technology for Asphalt Pavements: A Review. NanoWorld Journal, 9. doi:10.17756/nwj.2023-s2-058.
[11] Su, J. F. (2020). Self-healing pavements using microcapsules containing rejuvenator: From idea to real application. Eco-efficient Pavement Construction Materials, Woodhead Publishing, Sawston, United Kingdom. doi:10.1016/B978-0-12-818981-8.00011-4.
[12] Dong, R., Zhang, Z., & Zhou, T. (2025). Investigation on the self-healing properties of rejuvenated asphalt prepared from pre-desulfurised crumb tire rubber using waste cooking oil. Road Materials and Pavement Design, 1–18. doi:10.1080/14680629.2025.2467402.
[13] Gao, J., Wang, H., Xu, N., Li, D., & Leng, Z. (2025). Converting waste cooking oil and waste rubber powder into asphalt rejuvenator: Preparation parameters and rejuvenation effect. Construction and Building Materials, 477, 141362. doi:10.1016/j.conbuildmat.2025.141362.
[14] Xing, Q. Y., Su, J. F., Wang, X. Y., Sun, Q., Shao, R. Y., Xu, S. K., & Tan, Z. Y. (2025). Environment-friendly microcapsules containing waste soybean cooking oil as an anti-aging rejuvenator for bitumen. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 718, 136965. doi:10.1016/j.colsurfa.2025.136965.
[15] Kumandaş, A., Çavdar, E., Oruç, Ş., Pancar, E. B., & Kök, B. V. (2022). Effect of WCO addition on high and low-temperature performance of RET modified bitumen. Construction and Building Materials, 323, 126561. doi:10.1016/j.conbuildmat.2022.126561.
[16] Obaid, H. A., Hashim, T. M., Al-Abody, A. A. M., Nasr, M. S., Abbas, G. H., Kadhim, A. M., & Sadique, M. (2022). Properties of Modified Warm-Mix Asphalt Mixtures Containing Different Percentages of Reclaimed Asphalt Pavement. Energies, 15(20), 7813. doi:10.3390/en15207813.
[17] Abera, Y. A. (2024). Sustainable building materials: A comprehensive study on eco-friendly alternatives for construction. Composites and Advanced Materials, 33, 26349833241255956. doi:10.1177/26349833241255957.
[18] Hermadi, M., & Pravianto, W. (2019). The Effect of Resins on Rheological and ageing Characteristics of Bitumen for Pavement. MATEC Web of Conferences, 258, 01004. doi:10.1051/matecconf/201925801004.
[19] Tabaković, A., Mohan, J., & Karač, A. (2021). Conductive compartmented capsules encapsulating a bitumen rejuvenator. Processes, 9(8), 1361. doi:10.3390/pr9081361.
[20] Micaelo, R., Freire, A. C., & Pereira, G. (2020). Asphalt self-healing with encapsulated rejuvenators: effect of calcium-alginate capsules on stiffness, fatigue and rutting properties. Materials and Structures/Materiaux et Constructions, 53(1), 20. doi:10.1617/s11527-020-1453-7.
[21] Norambuena-Contreras, J., Concha, J. L., Arteaga-Pérez, L. E., & Gonzalez-Torre, I. (2022). Synthesis and Characterisation of Alginate-Based Capsules Containing Waste Cooking Oil for Asphalt Self-Healing. Applied Sciences (Switzerland), 12(5), 2739. doi:10.3390/app12052739.
[22] Wang, H., Yuan, M., Wu, J., Wan, P., & Liu, Q. (2022). Self-Healing Properties of Asphalt Concrete with Calcium Alginate Capsules Containing Different Healing Agents. Materials, 15(16), 5555. doi:10.3390/ma15165555.
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.