Phosphate Adsorption from Aqueous Solutions Using Eggshell and Sacha Inchi (Plukenetia volubilis) Mixture
Downloads
The use of bioadsorbents for the removal of pollutants is being increasingly investigated worldwide due to their high efficiency and the potential use of various natural sources. The present study introduces a novel approach for phosphate adsorption using sacha inchi cuticle and eggshell mixture. These materials were pyrolyzed (400°C for 20 min) and mixed in a 1:10 (eggshell:cuticle) ratio. An adsorption study was carried out using synthetic phosphate solution concentrations of 0–300 mg/L and adsorbent masses of 0.1–1 g/100 mL. The temperature, pH and stirring were kept constant (25°C, pH:5 and 150 rpm) during the tests. The phosphate adsorption capacity increased as higher phosphate concentrations were used, reaching a maximum of 300 mg/L. However, differences in removal were observed when varying the amount of adsorbent used, reaching equilibrium in approximately 1 h, with a percentage of phosphate removal between 31 and 41%. The adsorption process followed a Freundlich isotherm with a correlation coefficient of 0.97, suggesting a multilayer adsorption process. According to the SEM-EDX results confirmed a high concentration of carbon and oxygen in the sacha inchi cuticle, in that sense, this by-product could be evaluated for the removal of other contaminants from water.
Downloads
[1] Rodriguez-Narvaez, O. M., Peralta-Hernandez, J. M., Goonetilleke, A., & Bandala, E. R. (2017). Treatment technologies for emerging contaminants in water: A review. Chemical Engineering Journal, 323, 361-380. doi:10.1016/j.cej.2017.04.106.
[2] Bhojwani, S., Topolski, K., Mukherjee, R., Sengupta, D., & El-Halwagi, M. M. (2019). Technology review and data analysis for cost assessment of water treatment systems. Science of the Total Environment, 651, 2749–2761. doi:10.1016/j.scitotenv.2018.09.363.
[3] Velusamy, K., Periyasamy, S., Kumar, P. S., Vo, D. V. N., Sindhu, J., Sneka, D., & Subhashini, B. (2021). Advanced techniques to remove phosphates and nitrates from waters: a review. Environmental Chemistry Letters, 19(4), 3165–3180. doi:10.1007/s10311-021-01239-2.
[4] Priya, E., Kumar, S., Verma, C., Sarkar, S., & Maji, P. K. (2022). A comprehensive review on technological advances of adsorption for removing nitrate and phosphate from waste water. Journal of Water Process Engineering, 49, 103159. doi:10.1016/j.jwpe.2022.103159.
[5] Dodds, W. K., & Smith, V. H. (2016). Nitrogen, phosphorus, and eutrophication in streams. Inland Waters, 6(2), 155–164. doi:10.5268/IW-6.2.909.
[6] Woodward, G., Gessner, M. O., Giller, P. S., Gulis, V., Hladyz, S., Lecerf, A., Malmqvist, B., McKie, B. G., Tiegs, S. D., Cariss, H., Dobson, M., Elosegi, A., Ferreira, V., Graça, M. A. S., Fleituch, T., Lacoursière, J. O., Nistorescu, M., Pozo, J., Risnoveanu, G., … Chauvet, E. (2012). Continental-scale effects of nutrient pollution on stream ecosystem functioning. Science, 336(6087), 1438–1440. doi:10.1126/science.1219534.
[7] Mainstone, C. P., & Parr, W. (2002). Phosphorus in rivers - Ecology and management. Science of the Total Environment, 282–283, 25–47. doi:10.1016/S0048-9697(01)00937-8.
[8] Jellali, S., Khiari, B., Al-Balushi, M., Al-Sabahi, J., Hamdi, H., Bengharez, Z., Al-Abri, M., Al-Nadabi, H., & Jeguirim, M. (2024). Use of waste marble powder for the synthesis of novel calcium-rich biochar: Characterization and application for phosphorus recovery in continuous stirring tank reactors. Journal of Environmental Management, 351. doi:10.1016/j.jenvman.2023.119926.
[9] Zhou, J., Dong, K., Yu, Z., & Li, Z. (2024). Pilot-scale phosphorus recovery from urine sewage by in-situ formed calcium carbonate. Desalination and Water Treatment, 320, 100881. doi:10.1016/j.dwt.2024.100881.
[10] Crites, R. W., Middlebrooks, E. J., & Reed, S. C. (2010). Natural wastewater treatment systems. CRC Press, Boca Raton, United States. doi:10.1201/9781420026443.
[11] Chen, G. (2004). Electrochemical technologies in wastewater treatment. Separation and purification Technology, 38(1), 11-41. doi:10.1016/j.seppur.2003.10.006.
[12] Arora, R. (2019). Adsorption of heavy metals-a review. Materials Today: Proceedings, 18, 4745–4750. doi:10.1016/j.matpr.2019.07.462.
[13] Bunce, J. T., Ndam, E., Ofiteru, I. D., Moore, A., & Graham, D. W. (2018). A review of phosphorus removal technologies and their applicability to small-scale domestic wastewater treatment systems. Frontiers in Environmental Science, 6(Feb), 8. doi:10.3389/fenvs.2018.00008.
[14] Sajjad, M., Huang, Q., Khan, S., Nawab, J., Khan, M. A., Ali, A., Ullah, R., Kubar, A. A., Guo, G., Yaseen, M., & Sajjad, M. (2024). Methods for the removal and recovery of nitrogen and phosphorus nutrients from animal waste: A critical review. Ecological Frontiers, 44(1), 2–14. doi:10.1016/j.chnaes.2023.05.003.
[15] Xiong, J., Qin, Y., Islam, E., Yue, M., & Wang, W. (2011). Phosphate removal from solution using powdered freshwater mussel shells. Desalination, 276(1–3), 317–321. doi:10.1016/j.desal.2011.03.066.
[16] Brakemi, E., Michael, K., Tan, S. P., & Helen, H. (2023). Phosphate removal from wastewater using scallop and whelk shells. Journal of Water Process Engineering, 55, 104159. doi:10.1016/j.jwpe.2023.104159.
[17] Nayeem, A., Mizi, F., Ali, M. F., & Shariffuddin, J. H. (2023). Utilization of cockle shell powder as an adsorbent to remove phosphorus-containing wastewater. Environmental Research, 216. doi:10.1016/j.envres.2022.114514.
[18] Morales-Figueroa, C., Teutli-Sequeira, A., Linares-Hernández, I., Martínez-Miranda, V., Garduño-Pineda, L., Barrera‐Díaz, C. E., García-Morales, M. A., & Mier-Quiroga, M. A. (2021). Phosphate removal from food industry wastewater by chemical precipitation treatment with biocalcium eggshell. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 56(5), 549–565. doi:10.1080/10934529.2021.1895591.
[19] Park, J. H., Choi, A. Y., Lee, S. L., Lee, J. H., Rho, J. S., Kim, S. H., & Seo, D. C. (2022). Removal of phosphates using eggshells and calcined eggshells in high phosphate solutions. Applied Biological Chemistry, 65(1), 75. doi:10.1186/s13765-022-00744-4.
[20] Fritzen, R. R., & Domingues Benetti, A. (2021). Phosphorus removal in domestic wastewater treatment plant by calcined eggshell. Water Science and Technology, 84(4), 995–1010. doi:10.2166/wst.2021.263.
[21] Alzgool, H. A., Shawashreh, A. M., Albtoosh, L. A., & Abusamra, B. A. (2024). Experimental investigations: Reinforced Concrete Beams Bending Strength with Brine Wastewater in Short Age. Civil Engineering Journal, 10(01), 159-170. doi:10.28991/CEJ-2024-010-01-010.
[22] Iftikhar, L., Ahmad, I., Saleem, M., Rasheed, A., & Waseem, A. (2024). Exploring the chemistry of waste eggshells and its diverse applications. Waste Management, 189, 348–363. doi:10.1016/j.wasman.2024.08.024.
[23] Nielsen, M. B., Meyer, A. S., & Arnau, J. (2024). The Next Food Revolution Is Here: Recombinant Microbial Production of Milk and Egg Proteins by Precision Fermentation. Annual Review of Food Science and Technology, 15(1), 173–187. doi:10.1146/annurev-food-072023-034256.
[24] Liu, X., Shen, F., & Qi, X. (2019). Adsorption recovery of phosphate from aqueous solution by CaO-biochar composites prepared from eggshell and rice straw. Science of the Total Environment, 666, 694–702. doi:10.1016/j.scitotenv.2019.02.227.
[25] Pérez, S., Muñoz-Saldaña, J., Garcia-Nunez, J. A., Acelas, N., & Flórez, E. (2022). Unraveling the Ca–P species produced over the time during phosphorus removal from aqueous solution using biocomposite of eggshell-palm mesocarp fiber. Chemosphere, 287. doi:10.1016/j.chemosphere.2021.132333.
[26] Quisperima, A., Pérez, S., Flórez, E., & Acelas, N. (2022). Valorization of potato peels and eggshells wastes: Ca-biocomposite to remove and recover phosphorus from domestic wastewater. Bioresource Technology, 343. doi:10.1016/j.biortech.2021.126106.
[27] Xu, Q., Li, C., Sumita, & Pang, W. (2024). Study on the removal efficacy and mechanism of phosphorus from wastewater by eggshell-modified biochar. Water Environment Research, 96(3). doi:10.1002/wer.10998.
[28] Sun, C., Huang, C., Wang, P., Yin, J., Tian, H., Liu, Z., Xu, H., Zhu, J., Hu, X., & Liu, Z. (2024). Low-cost eggshell-fly ash adsorbent for phosphate recovery: A potential slow-release phosphate fertilizer. Water Research, 255. doi:10.1016/j.watres.2024.121483.
[29] Liu, X., & Lv, J. (2023). Efficient Phosphate Removal from Wastewater by Ca-Laden Biochar Composites Prepared from Eggshell and Peanut Shells: A Comparison of Methods. Sustainability (Switzerland), 15(3), 1778. doi:10.3390/su15031778.
[30] Steiger, B. G. K., Bui, N. T., Babalola, B. M., & Wilson, L. D. (2024). Eggshell incorporated agro-waste adsorbent pellets for sustainable orthophosphate capture from aqueous media. RSC Sustainability, 2(5), 1498–1507. doi:10.1039/d3su00415e.
[31] Bus, A., Budzanowska, K., Karczmarczyk, A., & Baryła, A. (2025). Raw and Calcined Eggshells as P-Reactive Materials in a Circular Economy Approach. Sustainability (Switzerland), 17(3), 1191. doi:10.3390/su17031191.
[32] Sarker, P., Liu, X., Rahaman, M. S., & Maruo, M. (2025). Eggshell waste as a promising adsorbent for phosphorus recovery from wastewater: A review. Water Biology and Security, 4(1), 100319. doi:10.1016/j.watbs.2024.100319.
[33] Torres Sánchez, E. G., Hernández-Ledesma, B., & Gutiérrez, L. F. (2023). Sacha Inchi Oil Press-cake: Physicochemical Characteristics, Food-related Applications and Biological Activity. Food Reviews International, 39(1), 148–159. doi:10.1080/87559129.2021.1900231.
[34] Kittibunchakul, S., Hudthagosol, C., Sanporkha, P., Sapwarobol, S., Temviriyanukul, P., & Suttisansanee, U. (2022). Evaluation of Sacha Inchi (Plukenetia volubilis L.) By-Products as Valuable and Sustainable Sources of Health Benefits. Horticulturae, 8(4). doi:10.3390/horticulturae8040344.
[35] Kumar, B., Smita, K., Sánchez, E., Stael, C., & Cumbal, L. (2016). Andean Sacha inchi (Plukenetia volubilis L.) shell biomass as new biosorbents for Pb2+ and Cu2+ ions. Ecological Engineering, 93, 152–158. doi:10.1016/j.ecoleng.2016.05.034.
[36] Kunarbekova, M., Busquets, R., Sailaukhanuly, Y., Mikhalovsky, S. V., Toshtay, K., Kudaibergenov, K., & Azat, S. (2024). Carbon adsorbents for the uptake of radioactive iodine from contaminated water effluents: A systematic review. Journal of Water Process Engineering, 67. doi:10.1016/j.jwpe.2024.106174.
[37] Peña-Guzmán, C., Otálvaro-Álvarez, Á., & Jiménez-Ariza, T. (2024). Use of oilseed crops biomass for heavy metal treatment in water. Oil Crop Science, 9(3), 177–186. doi:10.1016/j.ocsci.2024.07.001.
[38] Sanabria Buitrago, M., Melgarejo Díaz, S. J., Ovalle Córdoba, A., Mora-Bayona, V., & Fernández Lizarazo, J. C. (2025). Methodological proposal for environmental zoning based on spectral indices in a representative sector of the Llanos Orientales of Colombia. Revista Novedades Colombianas, 20(1). doi:10.47374/novcol.2025.v20.2596.
[39] Chaiya, C., & Kaewvimol, L. (2024). Enhanced biofuel production from Sacha Inchi wastes: Optimizing pyrolysis for higher yield and improved fuel properties. Heliyon, 10(15), e35090. doi:10.1016/j.heliyon.2024.e35090.
[40] Gurung, D. P., Githinji, L. J. M., & Ankumah, R. O. (2012). Assessing the nitrogen and phosphorus loading in the Alabama (USA) River Basin using PLOAD model. Air, Soil and Water Research, 6, 23–36. doi:10.4137/ASWR.S10548.
[41] Köse, T. E., & Kivanç, B. (2011). Adsorption of phosphate from aqueous solutions using calcined waste eggshell. Chemical Engineering Journal, 178, 34–39. doi:10.1016/j.cej.2011.09.129.
[42] Revellame, E. D., Fortela, D. L., Sharp, W., Hernandez, R., & Zappi, M. E. (2020). Adsorption kinetic modeling using pseudo-first order and pseudo-second order rate laws: A review. Cleaner Engineering and Technology, 1, 100032. doi:10.1016/j.clet.2020.100032.
[43] Torit, J., & Phihusut, D. (2019). Phosphorus removal from wastewater using eggshell ash. Environmental Science and Pollution Research, 26(33), 34101–34109. doi:10.1007/s11356-018-3305-3.
[44] Baskaran, P., & Abraham, M. (2022). Adsorption of cadmium (Cd) and lead (Pb) using powdered activated carbon derived from Cocos Nucifera waste: A kinetics and equilibrium study for long-term sustainability. Sustainable Energy Technologies and Assessments, 53, 102709. doi:10.1016/j.seta.2022.102709.
[45] Langmuir, I. (1917). The constitution and fundamental properties of solids and liquids. II. Liquids. Journal of the American Chemical Society, 39(9), 1848–1906. doi:10.1021/ja02254a006.
[46] Freundlich, H. (1907). On adsorption in solutions. Zeitschrift für Physikalische Chemie, 57(1), 385-470. (In German).
[47] Rouquerol, J., Rouquerol, F., Llewellyn, P., Maurin, G., & Sing, K. (2013). Adsorption by powders and porous solids: principles, methodology and applications. Academic Press, Cambridge, United States. doi:10.1016/B978-0-12-598920-6.X5000-3.
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.