Fragility Assessment of Cable-Stayed Bridge Towers Under Scaled Earthquakes
Downloads
Cable-stayed bridges exhibit exceptional vulnerability to seismic excitation, particularly under combined vertical and horizontal ground motions in tectonically active regions. This study characterizes the seismic fragility of cable-stayed bridge towers using comprehensive probabilistic assessment methodologies. The framework integrates fragility curve development and Monte Carlo simulation, employing 30 earthquake ground motion records to construct robust statistical models of structural response. Fragility functions quantify the probability of exceeding predefined damage states across varying seismic intensity measures, while Monte Carlo analyses capture the stochastic nature of behavior and highlight response clustering around mean performance levels for distinct classifications. The findings reveal pronounced structural vulnerabilities within cable-stayed bridge systems, shaped by both epistemic and aleatory uncertainties that may lead to progressive collapse under extreme seismic events. Computational results indicate that although responses converge statistically around expected values, considerable scatter persists across limit states. For instance, at Sa(T1) = 1.0 g, exceedance probabilities diverge significantly: OP is almost certain (>99.9%), IO reaches 86.5%, DC 46.9%, and CP only 10.9%. Under more severe shaking (2.0 g), DC exceedance exceeds 98%, while CP remains 31%, illustrating substantial variability in fragility across thresholds. These results underscore the urgent need for improved seismic design philosophies in cable-stayed infrastructure within hazardous environments. The research advances bridge engineering practice by clarifying fundamental vulnerability mechanisms and guiding the development of innovative material systems, retrofit strategies, and structural health monitoring protocols aimed at enhancing seismic resilience.
Downloads
[1] Nazmy, A. S., & Abdel-Ghaffar, A. M. (1990). Non-linear earthquake-response analysis of long-span cable-stayed bridges: Theory. Earthquake Engineering & Structural Dynamics, 19(1), 45-62. doi:10.1002/eqe.4290190106.
[2] Abdel‐Ghaffar, A. M., & Nazmy, A. S. (1991). 3D Nonlinear Seismic Behavior of Cable-Stayed Bridges. Journal of Structural Engineering, 117(11), 3456–3476. doi:10.1061/(asce)0733-9445(1991)117:11(3456).
[3] Shinozuka, M., Feng, M. Q., Lee, J., & Naganuma, T. (2000). Statistical Analysis of Fragility Curves. Journal of Engineering Mechanics, 126(12), 1224–1231. doi:10.1061/(asce)0733-9399(2000)126:12(1224).
[4] Kim, S. H., & Shinozuka, M. (2004). Development of fragility curves of bridges retrofitted by column jacketing. Probabilistic Engineering Mechanics, 19(1), 105–112. doi:10.1016/j.probengmech.2003.11.009.
[5] Li, L., Hu, S., & Wang, L. (2017). Seismic fragility assessment of a multi-span cable-stayed bridge with tall piers. Bulletin of Earthquake Engineering, 15(9), 3727–3745. doi:10.1007/s10518-017-0106-x.
[6] Chen, C., Liu, J., Lin, J., & Li, S. (2024). Seismic fragility analysis of three-tower cable-stayed bridges with different connection configurations. Earthquake Engineering and Engineering Vibration, 23(4), 1009–1027. doi:10.1007/s11803-024-2285-1.
[7] Liang, Y., Zhao, T., Wei, Y., & Guan, P. (2025). Fragility analysis of cross-sea highway cable-stayed bridges under seismic-wind combined loading. Engineering Failure Analysis, 173, 109451. doi:10.1016/j.engfailanal.2025.109451.
[8] Li, C., Li, H. N., Hao, H., Bi, K., & Chen, B. (2018). Seismic fragility analyses of sea-crossing cable-stayed bridges subjected to multi-support ground motions on offshore sites. Engineering Structures, 165, 441–456. doi:10.1016/j.engstruct.2018.03.066.
[9] Guo, J., Gu, Y., Wu, W., Chu, S., & Dang, X. (2022). Seismic Fragility Assessment of Cable-Stayed Bridges Crossing Fault Rupture Zones. Buildings, 12(7), 1045. doi:10.3390/buildings12071045.
[10] ECP-201. (2012). Egyptian Code for Calculation of. Loads and Forces for Buildings. Research center for housing and building, Giza, Egypt.
[11] Tang, H., Xu, W., & Yi, J. (2024). Seismic performance of cable-stayed bridges under large earthquake ground motions considering the loss of stay cables. Case Studies in Construction Materials, 20, 2888. doi:10.1016/j.cscm.2024.e02888.
[12] Pang, Y., Wu, X., Shen, G., & Yuan, W. (2014). Seismic Fragility Analysis of Cable-Stayed Bridges Considering Different Sources of Uncertainties. Journal of Bridge Engineering, 19(4), 4013015. doi:10.1061/(asce)be.1943-5592.0000565.
[13] Variyavwala, J. P., Gondaliya, K. M., Desai, A. K., & Noroozinejad Farsangi, E. (2023). Seismic fragility estimation of cable-stayed bridges with various pylon shapes considering soil-pile interaction. Bulletin of Earthquake Engineering, 21(7), 3647–3671. doi:10.1007/s10518-023-01647-5.
[14] Seleemah, M. A., Helam, M. S., Abu-alenein, M. A., Hammad, E. B., Goda, M. S., Seleemah, A. A., & Elkady, A. Z. (2022). Response of Aswan cable-stayed bridge to spatial non-synchronous seismic excitations. Journal of Engineering and Applied Science, 69(1), 70. doi:10.1186/s44147-022-00124-1.
[15] Jia, Y., Xin, L., Yang, D., Pei, M., Zhao, L., & Huang, Z. (2024). Seismic behavior analysis of long-span cable-stayed bridge under bi-directional near-fault ground motions. Structures, 64. doi:10.1016/j.istruc.2024.106512.
[16] Hosseinpour, F., & Abdelnaby, A. E. (2017). Fragility curves for RC frames under multiple earthquakes. Soil Dynamics and Earthquake Engineering, 98, 222–234. doi:10.1016/j.soildyn.2017.04.013.
[17] Karim, K. R., & Yamazaki, F. (2003). A simplified method of constructing fragility curves for highway bridges. Earthquake Engineering & Structural Dynamics, 32(10), 1603–1626. doi:10.1002/eqe.291.
[18] Shinozuka, M., Feng, M. Q., Kim, H.-K., & Kim, S.-H. (2000). Nonlinear Static Procedure for Fragility Curve Development. Journal of Engineering Mechanics, 126(12), 1287–1295. doi:10.1061/(asce)0733-9399(2000)126:12(1287).
[19] Vosooghi, A., & Saiidi, M. S. (2012). Experimental fragility curves for seismic response of reinforced concrete bridge columns. ACI Structural Journal, 109(6), 825–834. doi:10.14359/51684126.
[20] Sangadji, S., Wibowo, N. A., Tropormera, E. N., Purwanto, E., & Kristiawan, S. A. (2017). Fragility function for assessing seismic risk of typical concrete bridge by means of nonlinear static and dynamic analysis. MATEC Web of Conferences, 138, 2005. doi:10.1051/matecconf/201713802005.
[21] Varga, S., & Chiorean, C. G. (2016). Seismic Assessment of Reinforced Concrete Frameworks through Advanced Pushover Analysis and Nonlinear Response of a SDOF Oscillator. Procedia Engineering, 161, 332–336. doi:10.1016/j.proeng.2016.08.568.
[22] Abou-Rayan, A. M. (2002). Three-Dimensional Nonlinear Seismic Behavior of Suez-Canal Cable-Stayed Bridge. Proceedings of the 4th International Conference on Civil and Architecture Engineering, Military Technical College, 14-16 May, 2002, Cairo Egypt.
[23] Shahi, R., Lam, N. T., Gad, E. F., Saifullah, I., Wilson, J. L., & Watson, K. (2014). Choice of intensity measure in incremental dynamic analysis. Proceedings of the Australian Earthquake Engineering Society 2014 Conference, 21-23 November, 2014, Lorne, Australian.
[24] Farag, M. M. N., Mehanny, S. S. F., & Bakhoum, M. M. (2015). Establishing optimal gap size for precast beam bridges with a buffer-gap-elastomeric bearings system. Earthquake and Structures, 9(1), 195–219. doi:10.12989/eas.2015.9.1.195.
[25] Šiška, D. (2016). Monte Carlo Methods. Available online: https://webhomes.maths.ed.ac.uk/~dsiska/MonteCarloMethods.pdf (accessed on October 2025).
[26] Sarsoruo, C., Gebo, R., & Anderson, P. K. (2019). Simulating the lognormal distribution: A Monte Carlo method. Electronic Journal of Informatics, 1, 73-89. doi:10.1137/1012001.
[27] Shinozuka, M., & Deodatis, G. (1997). Effect of Spatial Variation of Ground Motion for Ordinary Bridges. Proceedings of the 7th US-Japan Workshop on Earthquake Disaster Prevention for Lifeline Systems, 4-7 November, 1997, Seattle, United States
[28] Halton, J. H. (1970). A retrospective and prospective survey of the Monte Carlo method. Siam Review, 12(1), 1-63.
[29] Jiao, C. Y., Li, J. Z., & Long, P. H. (2012). Seismic fragility analysis of long-span cable-stayed bridges. Advanced Science Letters, 12(1), 160-164. doi:10.1166/asl.2012.2830.
[30] Liang, Y., Kong, Y., Yan, L., Zhao, Z., & Guan, P. (2025). Multi-hazard fragility analysis of cross-sea cable-stayed bridges cable bent tower under seismic-wind combined action. Soil Dynamics and Earthquake Engineering, 195, 109422. doi:10.1016/j.soildyn.2025.109422.
[31] Jiang, H., Bai, X., Song, G., Wang, L., Zeng, C., Xue, Z., & Zhao, X. (2024). Fragility assessment of sea-crossing cable-stayed bridge subjected to multi-hazard action via TKC and R-vine copula. Engineering Structures, 307, 117874. doi:10.1016/j.engstruct.2024.117874.
[32] Lan, Y., Xu, J., Zhong, J., & Li, Y. (2024). Seismic fragility and resilience assessment of large-span cable-stayed bridges under multi-support ground motions with non-Gaussian characteristics. Earthquake Engineering & Structural Dynamics. doi:10.1002/eqe.4220.
[33] Lu, X., Wei, K., He, H., & Qin, S. (2022). Life-cycle seismic fragility of a cable-stayed bridge considering chloride-induced corrosion. Earthquake Engineering and Resilience, 1(1), 60–72. doi:10.1002/eer2.7.
[34] FEMA 547. (2006). (Techniques for the seismic rehabilitation of existing buildings (FEMA 547). Federal Emergency Management Agency (FEMA), Washington, United States.
[35] EN 1998-3. (2005). Eurocode 8, Design of Structures for Earthquake Resistance, Part 3: Assessment and Retrofitting of Buildings. European Committee for Standardization (CEN), Brussels, Belgium.
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.![]()















