Experimental and Numerical Modeling for the Impact of Freezing Temperatures Reduction on the Mechanical Properties of Frozen Sand
Downloads
Artificial ground freezing (AGF) is an approach that uses heat extraction to congeal in situ soil to improve soil quality temporarily. This technology is ecologically sustainable and has minimal adverse effects on soil and groundwater. AGF is widely used in subterranean construction, providing temporary support and groundwater sealing. Nevertheless, precisely simulating the mechanical characteristics of frozen soils with dependable constitutive models presents significant challenges for scientists and engineers. Frozen soil, consisting of ice, liquid water, solid particles, and pore air, is a distinctive geological substance with heightened sensitivity to temperature and external influences. Experimental studies have shown that the mechanical properties of frozen soils are significantly influenced by temperature, confining pressure, strain rate, stress path, and stress level. Numerical simulation offers a superior approach for forecasting soil qualities, particularly in artificial frozen soil technologies for excavations like tunnels and mines. This research examines the impact of varying freezing temperatures and pressures on soil characteristics. This research employs experiments and numerical analysis using Mohr-Coulomb and hardening soil models. The experimental results indicated that the elastic modulus almost increases linearly by a rate of 90000 kN/m² with 1ºC drops below 0ºC. The unconfined compressive strength increased by 2068 kN/m² for each 1°C decrease from 0 to -2°C. Within the temperature range of -2°C to -10°C, the rate of increase is 529 kN/m². The apparent cohesion increased by 238.75 kN/m² for each 1°C decrease from 0 to -2°C. Within the temperature range of -2°C to -10°C, the rate of increase is 66.25 kN/m². A nonlinear association between temperature decrease and tensile stress rise was observed. Numerical analysis shows that as confined pressure increases and temperature decreases, materials can either get stronger or weaker; the Mohr-Coulomb and HS models show stress-strain curve behavior that matches what was found in experiments.
Downloads
[1] Bragg, R. A., & Andersland, O. B. (1981). Strain rate, temperature, and sample size effects on compression and tensile properties of frozen sand. Engineering Geology, 18(1–4), 35–46. doi:10.1016/0013-7952(81)90044-2.
[2] Xu, X., Lai, Y., Dong, Y., & Qi, J. (2011). Laboratory investigation on strength and deformation characteristics of ice-saturated frozen sandy soil. Cold Regions Science and Technology, 69(1), 98–104. doi:10.1016/j.coldregions.2011.07.005.
[3] Liu, J., Lv, P., Cui, Y., & Liu, J. (2014). Experimental study on direct shear behavior of frozen soil–concrete interface. Cold Regions Science and Technology, 104–105, 1–6. doi:10.1016/j.coldregions.2014.04.007.
[4] Li, K. Q., Yin, Z. Y., Jin, Y. F., & Liu, Y. (2025). Investigation on evolution law of frozen wall thickness in artificial ground freezing under seepage conditions. Canadian Geotechnical Journal, 62, 1–21. doi:10.1139/cgj-2023-0576.
[5] Li, K. Q., Yin, Z. Y., Qi, J. L., & Liu, Y. (2024). State-of-the-Art Constitutive Modelling of Frozen Soils. Archives of Computational Methods in Engineering, 31(7), 3801–3842. doi:10.1007/s11831-024-10102-w.
[6] Hu, X. D., & Chen, R. (2006). Construction technology of freezing method applied to cross-passage of double-deck cross-river road tunnel. Low Temperature Architecture Technology, 5, 64–66.
[7] Cai, C., Ma, W., Zhou, Z., Mu, Y., Zhao, S., Chen, D., & Liao, M. (2019). Laboratory investigation on strengthening behavior of frozen China standard sand. Acta Geotechnica, 14(1), 179–192. doi:10.1007/s11440-018-0648-3.
[8] Fish, A. M., & Zaretsky, Y. K. (1997). Ice Strength as a Function of Hydrostatic Pressure and Temperature. Defense Technical Information Center, CRREL976. doi:10.21236/ada333030.
[9] Li, K. Q., Li, D. Q., & Liu, Y. (2020). Meso-scale investigations on the effective thermal conductivity of multi-phase materials using the finite element method. International Journal of Heat and Mass Transfer, 151, 119383. doi:10.1016/j.ijheatmasstransfer.2020.119383.
[10] Yang, Z. J., Still, B., & Ge, X. (2015). Mechanical properties of seasonally frozen and permafrost soils at high strain rate. Cold Regions Science and Technology, 113, 12–19. doi:10.1016/j.coldregions.2015.02.008.
[11] Lai, Y., Jin, L., & Chang, X. (2009). Yield criterion and elasto-plastic damage constitutive model for frozen sandy soil. International Journal of Plasticity, 25(6), 1177–1205. doi:10.1016/j.ijplas.2008.06.010.
[12] He, J., Niu, F., Su, W., & Jiang, H. (2023). Nonlinear unified strength criterion for frozen soil based on homogenization theory. Mechanics of Advanced Materials and Structures, 30(19), 4002–4015. doi:10.1080/15376494.2022.2087126.
[13] Lai, Y., Xu, X., Dong, Y., & Li, S. (2013). Present situation and prospect of mechanical research on frozen soils in China. Cold Regions Science and Technology, 87, 6–18. doi:10.1016/j.coldregions.2012.12.001.
[14] Li, K. Q., Yin, Z. Y., & Liu, Y. (2023). Influences of spatial variability of hydrothermal properties on the freezing process in artificial ground freezing technique. Computers and Geotechnics, 159, 105448. doi:10.1016/j.compgeo.2023.105448.
[15] Liu, Y., Li, K. Q., Li, D. Q., Tang, X. S., & Gu, S. X. (2022). Coupled thermal–hydraulic modeling of artificial ground freezing with uncertainties in pipe inclination and thermal conductivity. Acta Geotechnica, 17(1), 257–274. doi:10.1007/s11440-021-01221-w.
[16] Zhou, J., Zhao, W., & Tang, Y. (2022). Practical prediction method on thaw deformation of soft clay subject to artificial ground freezing based on elaborate centrifuge modeling experiments. Tunnelling and Underground Space Technology, 122, 104352. doi:10.1016/j.tust.2021.104352.
[17] Li, K. Q., Yin, Z. Y., Zhang, N., & Liu, H. C. (2025). Physics-informed neural networks for solving steady-state temperature field in artificial ground freezing. Canadian Geotechnical Journal, 62, 1–17. doi:10.1139/cgj-2024-0650.
[18] French, H. (2003). The development of periglacial geomorphology: 1- up to 1965. Permafrost and Periglacial Processes, 14(1), 29–60. doi:10.1002/ppp.438.
[19] Yu, X., Zheng, G., Zhou, H., & Ma, F. (2025). Analytical solutions for the stability of stone column-supported and geosynthetic-reinforced embankment. Canadian Geotechnical Journal, 62, 1–15. doi:10.1139/cgj-2023-0314.
[20] Xu, K., Zhang, N., Yin, Z. Y., & Li, K. (2025). Finite element-integrated neural network for inverse analysis of elastic and elastoplastic boundary value problems. Computer Methods in Applied Mechanics and Engineering, 436, 117695. doi:10.1016/j.cma.2024.117695.
[21] Zhang, N., Xu, K., Yu Yin, Z., Li, K. Q., & Jin, Y. F. (2025). Finite element-integrated neural network framework for elastic and elastoplastic solids. Computer Methods in Applied Mechanics and Engineering, 433, 117474. doi:10.1016/j.cma.2024.117474.
[22] Yuanming, L., Yugui, Y., Xiaoxiao, C., & Shuangyang, L. (2010). Strength criterion and Elastoplastic constitutive model of frozen silt in generalized plastic mechanics. International Journal of Plasticity, 26(10), 1461–1484. doi:10.1016/j.ijplas.2010.01.007.
[23] Zhu, Y., & Carbee, D. L. (1984). Uniaxial compressive strength of frozen silt under constant deformation rates. Cold Regions Science and Technology, 9(1), 3–15. doi:10.1016/0165-232x(84)90043-0.
[24] Mayoralty of Baghdad. (2025). Mayoralty of Baghdad, Baghdad, Iraq. Available online: https://amanatbaghdad.gov.iq/en (accessed on July 2025).
[25] Azmatch, T. F., Sego, D. C., Arenson, L. U., & Biggar, K. W. (2011). Tensile strength and stress-strain behaviour of Devon silt under frozen fringe conditions. Cold Regions Science and Technology, 68(1–2), 85–90. doi:10.1016/j.coldregions.2011.05.002.
[26] Akagawa, S., & Nishisato, K. (2009). Tensile strength of frozen soil in the temperature range of the frozen fringe. Cold Regions Science and Technology, 57(1), 13–22. doi:10.1016/j.coldregions.2009.01.00.
[27] Zhou, G., Hu, K., Zhao, X., Wang, J., Liang, H., & Lu, G. (2015). Laboratory investigation on tensile strength characteristics of warm frozen soils. Cold Regions Science and Technology, 113, 81–90. doi:10.1016/j.coldregions.2015.02.003.
[28] PLAXIS 2D. (2021). Material Models Manual 2D. Bentley Communities: Exton, United States.
[29] Yamamoto, Y., & Springman, S. M. (2014). Axial compression stress path tests on artificial frozen soil samples in a triaxial device at temperatures just below 0 °C. Canadian Geotechnical Journal, 51(10), 1178–1195. doi:10.1139/cgj-2013-0257.
[30] Parameswaran, V. R., & Jones, S. J. (1981). Triaxial testing of frozen sand. Journal of Glaciology, 27(95), 147–155. doi:10.1017/S0022143000011308.
[31] Chamberlain, E., Groves, C., & Perham, R. (1972). The mechanical behaviour of frozen earth materials under high pressure triaxial test conditions. Géotechnique, 22(3), 469–483. doi:10.1680/geot.1972.22.3.469.
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.