Analysis of Influence Factor of Soil-Structure Interaction Considered in Pile Analysis using Finite Element Analysis
Downloads
This study evaluates two often‑overlooked factors in pile analysis (passive earth pressure and the pile-soil contact method) and quantifies their combined influence on load–settlement response, shaft friction, and stress distribution. Conventional finite element analyses rarely consider both passive earth pressure and pile–soil slip simultaneously. This research quantifies the influence of these two factors on the load–settlement behavior, shaft friction, and stress transfer mechanisms of a single square pile. A laboratory model test was conducted using a 50 × 50 × 150 mm model pile embedded in loose sand with a relative density of 25%, and the same conditions were replicated using a 3D FEM model in ANSYS. The soil was modeled using the Mohr–Coulomb model, with parameters obtained from direct shear tests, and the pile was defined as a linear elastic material. The lateral boundaries were defined under two conditions: a general roller-type boundary and a new boundary condition incorporating depth-dependent passive earth pressure. Interface behavior was analyzed with both bonded and frictional contacts. The passive earth pressure boundary condition reduced post-yield settlement error from 22% to 6% and increased calculated shaft friction by 4%, resulting in a post-yield settlement curve that closely matched the experimental results. Bonded contact overestimated the bearing capacity by 17% and produced unrealistic stress concentrations, while Frictional contact accurately reproduced the observed slip surface and ultimate bearing capacity within a 3% margin of error. Parametric analysis revealed that the elastic modulus governed pre-yield stiffness, whereas the friction coefficient primarily influenced plastic deformation behavior. By combining the depth-dependent passive earth pressure boundary with experimentally calibrated frictional contact, this study successfully captured both lateral confinement effects and interface slip, which are typically analyzed separately. Consequently, the predictive accuracy for settlement and bearing capacity of friction piles in sandy soils was empirically improved.
Downloads
[1] Carbonari, S., Dezi, F., & Leoni, G. (2011). Linear soil-structure interaction of coupled wall-frame structures on pile foundations. Soil Dynamics and Earthquake Engineering, 31(9), 1296–1309. doi:10.1016/j.soildyn.2011.05.008.
[2] Rha, C., & Taciroglu, E. (2007). Coupled Macroelement Model of Soil-Structure Interaction in Deep Foundations. Journal of Engineering Mechanics, 133(12), 1326–1340. doi:10.1061/(asce)0733-9399(2007)133:12(1326).
[3] Markou, G., AlHamaydeh, M., & Saadi, D. (2018). Effects of the soil-structure-interaction phenomenon on RC structures with pile foundations. 9th GRACM International Congress on Computational Mechanics, 4-6 June, 2018, Chania, Greece.
[4] Hokmabadi, A. S., Fatahi, B., & Samali, B. (2014). Assessment of soil-pile-structure interaction influencing seismic response of mid-rise buildings sitting on floating pile foundations. Computers and Geotechnics, 55, 172–186. doi:10.1016/j.compgeo.2013.08.011.
[5] Ritter, M. G., Menegotto, M. L., Costella, M. F., Pavan, R. C., & Pilz, S. E. (2020). Analysis of soil-structure interaction in buildings with deep foundation. Revista IBRACON de Estruturas e Materiais, 13(2), 248–273. doi:10.1590/S1983-41952020000200005.
[6] Visuvasam, J., & Chandrasekaran, S. S. (2019). Effect of soil–pile–structure interaction on seismic behaviour of RC building frames. Innovative Infrastructure Solutions, 4(1), 1–9. doi:10.1007/s41062-019-0233-0.
[7] Davisson, M. T. (1970). Design pile capacity. Proceedings of the Conference on Design and Installation of Pile Foundations and Cellular Structures, 13-15 April 1970, Bethlehem, Palestine.
[8] Davisson, M. T. (1972). High capacity piles. Proceedings of Lecture Series on Innovations in. Foundation Construction, 22 March, 1972, Innovations in Foundation Construction, ASCE, Illinois Section, Chicago, United States.
[9] Ghalib, Z. H., & Mahmood, M. R. (2024). The Behavior of Enlarged Base Pile Under Compression and Uplift Loading in Partially Saturated Sand. Civil Engineering Journal (Iran), 10(10), 3240–3252. doi:10.28991/CEJ-2024-010-10-08.
[10] Vesic, A. S. (1977). Design of pile foundations. NCHRP Synthesis of Highway Practice, (42), 1-68.
[11] Perau, E. W. (1997). Bearing capacity of shallow foundations. Soils and foundations, 37(4), 77-83. doi:10.3208/sandf.37.4_77.
[12] Chin, F. K. (1970). Estimation of the ultimate load of piles from tests not carried to failure. 2nd Southeast Asian Conference on Soil Engineering, 11-15 June, 1970, Singapore.
[13] Wang, D., Bienen, B., Nazem, M., Tian, Y., Zheng, J., Pucker, T., & Randolph, M. F. (2015). Large deformation finite element analyses in geotechnical engineering. Computers and Geotechnics, 65, 104–114. doi:10.1016/j.compgeo.2014.12.005.
[14] Cheng, Y. M., Wong, H., Leo, C. J., & Lau, C. K. (2016). Stability of Geotechnical Structures: Theoretical and Numerical Analysis. Frontiers in Civil Engineering: Volume 1. Bentham Science Publishers, Sharjah, United Arab Emirates. doi:10.2174/97816810830321160101.
[15] Potts, D. M. (2003). Numerical analysis: a virtual dream or practical reality? Géotechnique, 53(6), 535–573. doi:10.1680/geot.53.6.535.37330.
[16] Bakroon, M., Aubram, D., & Rackwitz, F. (2017). Geotechnical large deformation numerical analysis using implicit and explicit integration. 3rd International Conference on New Advances in Civil Engineering, 28-29 April, 2017, Helsinki, Finland.
[17] Wei, W., Zhao, Q., Jiang, Q., & Grasselli, G. (2018). Three new boundary conditions for the seismic response analysis of geomechanics problems using the numerical manifold method. International Journal of Rock Mechanics and Mining Sciences, 105, 110–122. doi:10.1016/j.ijrmms.2018.03.009.
[18] Zdravković, L., & Potts, D. M. (2010). Application of Numerical Analysis in Geotechnical Engineering Practice. GeoFlorida, 69–88. doi:10.1061/41095(365)4.
[19] Cividini, A., Gioda, G., & Sterpi, D. (2019). On the influence of strain softening in the numerical analysis of geotechnical problems. Geoecology and Computers, 207–213. doi:10.1201/9780203753620-30.
[20] Karpurapu, G. R., & Bathurst, R. J. (1988). Comparative analysis of some geomechanics problems using finite and infinite element methods. Computers and Geotechnics, 5(4), 269–284. doi:10.1016/0266-352X(88)90007-9.
[21] Qiu, G., Henke, S., & Grabe, J. (2009, May). Applications of Coupled Eulerian-Lagrangian method to geotechnical problems with large deformations. 2009 SIMULIA Customer Conference, 18-21 May 2009, London, United Kingdom.
[22] Tang, L., Cong, S., Xing, W., Ling, X., Geng, L., Nie, Z., & Gan, F. (2018). Finite element analysis of lateral earth pressure on sheet pile walls. Engineering Geology, 244, 146–158. doi:10.1016/j.enggeo.2018.07.030.
[23] Wang, Z. H., & Zhou, J. (2011). Three-dimensional numerical simulation and earth pressure analysis on double-row piles with consideration of spatial effects. Journal of Zhejiang University: Science A, 12(10), 758–770. doi:10.1631/jzus.A1100067.
[24] Jawad, S., & Han, J. (2021). Numerical Analysis of Laterally Loaded Single Free-Headed Piles within Mechanically Stabilized Earth Walls. International Journal of Geomechanics, 21(5). doi:10.1061/(asce)gm.1943-5622.0001989.
[25] Li, D., Yi, F., Li, X., Chen, S., Hu, Z., & Liu, J. (2024). Excavation Effects on Reinforced Concrete Pile Foundations: A Numerical Analysis. Buildings, 14(4), 995. doi:10.3390/buildings14040995.
[26] Zhan-Fang, H., Bai, X. H., Yin, C., & Liu, Y. Q. (2021). Numerical analysis for the vertical bearing capacity of composite pile foundation system in liquefiable soil under sine wave vibration. PLoS ONE, 16(3), 248502. doi:10.1371/journal.pone.0248502.
[27] Saeedi, M., Dehestani, M., Shooshpasha, I., Ghasemi, G., & Saeedi, B. (2018). Numerical analysis of pile-soil system under seismic liquefaction. Engineering Failure Analysis, 94, 96–108. doi:10.1016/j.engfailanal.2018.07.031.
[28] Ohta, Y., & Nakata, Y. (2025). Micromechanical Behavior of Pipe-Soil Interaction Under Lateral Loading of Buried Pipe Using 3D Dem. IOP Conference Series: Earth and Environmental Science, 1480(1), 12105. doi:10.1088/1755-1315/1480/1/012105.
[29] Elsiragy, M., Azzam, W., & Kassem, E. M. (2025). Experimental and Numerical Study of Enlarged-Head Monopile Under Lateral Load in Soft Clay. Civil Engineering Journal (Iran), 11(2), 453–471. doi:10.28991/CEJ-2025-011-02-04.
[30] Chauhan, V. B., & Dasaka, S. M. (2022). Active earth pressure on retaining wall with a relief shelf: a novel analytical method. Innovative Infrastructure Solutions, 7(1), 99. doi:10.1007/s41062-021-00690-y.
[31] Belytschko, T., & Black, T. (1999). Elastic crack growth in finite elements with minimal remeshing. International journal for numerical methods in engineering, 45(5), 601-620. doi:10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO;2-S.
[32] Smith, D. A. (2012). Well-posed two-point initial-boundary value problems with arbitrary boundary conditions. Mathematical Proceedings of the Cambridge Philosophical Society, 152(3), 473–496. doi:10.1017/S030500411100082X.
[33] Schweiger, H. F. (2008). The Role of Advanced Constitutive Models in Geotechnical Engineering. Geomechanics and Tunnelling, 1(5), 336–344. doi:10.1002/geot.200800033.
[34] Cui, Y., & Zhang, G. (2012). The elasticity-plasticity analysis of composite foundation with lime-soil pile by FEM. Applied Mechanics and Materials, 170–173, 762–765. doi:10.4028/www.scientific.net/AMM.170-173.762.
[35] Potts, D. M., Zdravković, L., Addenbrooke, T. I., Higgins, K. G., & Kovačević, N. (2001). Finite element analysis in geotechnical engineering: application, Thomas Telford, London, United Kingdom. doi:10.1680/feaigea.27831.
[36] Owen, D. R. J., & Hintou, E. (1981). Finite elements in plasticity: Theory and practice. Applied Ocean Research, 3(3), 149. doi:10.1016/0141-1187(81)90117-6.
[37] Al-Soudani, W.H.S., & Albusoda, B.S. (2021). Evaluating End-Bearing and Skin-Friction Resistance of Test Pipe Pile in Sand Soil. Modern Applications of Geotechnical Engineering and Construction. Lecture Notes in Civil Engineering, Vol 112. Springer, Singapore. doi:10.1007/978-981-15-9399-4_3.
[38] Kuwajima, K., Hyodo, M., & Hyde, A. F. (2009). Pile Bearing Capacity Factors and Soil Crushabiity. Journal of Geotechnical and Geoenvironmental Engineering, 135(7), 901–913. doi:10.1061/(asce)gt.1943-5606.0000057.
[39] Ismael, N. F. (1989). Skin Friction Of Driven Piles In Calcareous Sands. Journal of Geotechnical Engineering, 115(1), 135–139. doi:10.1061/(ASCE)0733-9410(1989)115:1(135).
[40] Yuan, M., & Poulos, H. G. (1987). Effect of loading rate on pile skin friction in sands. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 24(3), 114. doi:10.1016/0148-9062(87)90762-5.
[41] Tiwari, B., & Al-Adhadh, A. R. (2014). Influence of Relative Density on Static Soil-Structure Frictional Resistance of Dry and Saturated Sand. Geotechnical and Geological Engineering, 32(2), 411–427. doi:10.1007/s10706-013-9723-6.
[42] Prekop, Ľ. (2017). Modelling the pile load test. MATEC Web of Conferences, 107, 00033. doi:10.1051/matecconf/201710700033.
[43] Prekop, L. (2017). Modeling the load test of vertical resistance of pile. Key Engineering Materials, 738, 310–318. doi:10.4028/www.scientific.net/KEM.738.310.
[44] Xu, C., & Li, Y. (2014). A simulation study of bearing capacity of bored piles in Jinghe bridge based on ANSYS. Applied Mechanics and Materials, 556–562, 704–707. doi:10.4028/www.scientific.net/AMM.556-562.704.
[45] Zhao, M. H., Liu, D. P., Zhang, L., & Jiang, C. (2008). 3D finite element analysis on pile-soil interaction of passive pile group. Journal of Central South University of Technology (English Edition), 15(1), 75–80. doi:10.1007/s11771-008-0016-9.
[46] Tra, H. T., Huynh, Q. T., & Keawsawasvong, S. (2024). Estimating the Ultimate Load Bearing Capacity Implementing Extrapolation Method of Load-Settlement Relationship and 3D-Finite Element Analysis. Transportation Infrastructure Geotechnology, 11(4), 2764–2789. doi:10.1007/s40515-023-00332-z.
[47] Das, B. M. (1994). Principles of Geotechnical Engineering. PWS Publishing Company, Boston, United States.
[48] Wang, Y., Xiong, F., & Ren, J. (2022). Numerical Simulation and Application of Zero-Thickness Contact Surface Element with Variable Shear Stiffness on Pile Foundation. Advances in Civil Engineering, 7343847. doi:10.1155/2022/7343847.
[49] Ninić, J., Stascheit, J., & Meschke, G. (2014). Beam-solid contact formulation for finite element analysis of pile-soil interaction with arbitrary discretization. International Journal for Numerical and Analytical Methods in Geomechanics, 38(14), 1453–1476. doi:10.1002/nag.2262.
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.