Advancing Seismic Performance: Experimental Behavior of Hybridized Steel-FRP Composite Bars
Downloads
This study investigates the structural performance of reinforced concrete (RC) columns reinforced with hybrid Steel-FRP Composite Bars (SFCBs), offering a sustainable alternative to conventional steel and fiber-reinforced polymer (FRP) reinforcement. Eight large-scale RC columns, measuring 400 × 400 mm in cross-section and 1850 mm in height, were tested under combined cyclic and axial loading to simulate seismic conditions. The experimental variables included SFCB diameters (14 mm, 18 mm, 22 mm), axial load ratios (20%, 30%, 40%), and stirrup spacing (80 mm, 100 mm, 150 mm). The results indicate that SFCBs can effectively replace traditional steel reinforcement, providing comparable load-bearing capacity while significantly improving durability. Columns reinforced with SFCBs demonstrated superior initial stiffness and achieved higher drift ratios than steel-reinforced columns, exceeding the limits set by international design codes (ACI 440.2R, CSA S806-12, Eurocode 8) with maximum drift ratios of up to 6.5%. Increasing the SFCB diameter from 14 mm to 22 mm enhanced peak load capacity by 14%–20% and improved drift ratios by up to 113%. However, higher axial load ratios and wider stirrup spacing were found to reduce ductility. Specifically, increasing the axial load ratio from 20% to 40% decreased ductility by 13.46%, while increasing stirrup spacing from 80 mm to 150 mm reduced ductility by 8.90%. These findings underscore the potential of SFCBs to enhance the performance of RC columns in seismic and corrosive environments, offering a durable and sustainable solution for modern infrastructure. To the authors' knowledge, this study represents the first comprehensive investigation into the behavior of SFCB-reinforced RC columns under combined cyclic and axial loading, providing valuable insights for the design of resilient concrete structures.
Downloads
[1] ACI 440.11-22. (2022). Building code requirements for structural concrete reinforced with Glass Fiber-Reinforced Polymer (GFRP) bars—code and commentary. American Concrete Institute (ACI), Michigan, United States.
[2] Cairns, J., Dut, Y., & Law, D. (2008). Structural performance of corrosion-damaged concrete beams. Magazine of Concrete Research, 60(5), 359–370. doi:10.1680/macr.2007.00102.
[3] Gouda Sayed, A., H. Ali, A., & M. Mohamed, H. (2022). Innovative FE Analysis to Investigate the Effect of Flexural Reinforcement on the Behavior of Beams. International Journal of Green Management and Business Studies, 2(2), 41–52. doi:10.56830/qkul4110.
[4] Hassan, G. B., Al-Kamaki, Y. S. S., Mohammed, A. A., & AlSaad, A. (2023). Long-term exposure of RC columns immersed in seawater or crude oil confined with CFRP fabrics under monotonic or cyclic loading. Case Studies in Construction Materials, 18. doi:10.1016/j.cscm.2022.e01747.
[5] Windisch, A. (2010). Performance evaluation of glass fiber-reinforced polymer shear reinforcement for concrete beams. ACI Structural Journal, 107(6), 738–740. doi:10.14359/51663388.
[6] Manalo, A., Maranan, G., Benmokrane, B., Cousin, P., Alajarmeh, O., Ferdous, W., Liang, R., & Hota, G. (2020). Comparative durability of GFRP composite reinforcing bars in concrete and in simulated concrete environments. Cement and Concrete Composites, 109, 103564. doi:10.1016/j.cemconcomp.2020.103564.
[7] Ali, A. H., Gouda, A., Mohamed, H. M., & Esmael, H. M. (2022). Experimental and Numerical Analysis of Steel and Fiber-Reinforced Polymer Concrete Beams under Transverse Load. ACI Structural Journal, 119(4), 109–121. doi:10.14359/51734651.
[8] De Luca, A., Matta, F., & Nanni, A. (2010). Behavior of full-scale glass fiber-reinforced polymer reinforced concrete columns under axial load. ACI Structural Journal, 107(5), 589–596. doi:10.14359/51663912.
[9] Etman, E. E., Mahmoud, M. H., Hassan, A., & Mowafy, M. H. (2023). Flexural behaviour of concrete beams reinforced with steel-FRP composite bars. Structures, 50, 1147–1163. doi:10.1016/j.istruc.2023.02.098.
[10] Wu, G., Sun, Z., Wu, Z., & Luo, Y. (2012). Mechanical properties of steel-FRP composite bars (SFCBs) and performance of SFCB reinforced concrete structures. Advances in Structural Engineering, 15(4), 625–636. doi:10.1260/1369-4332.15.4.625.
[11] Sun, Y., Sun, Z., Zheng, Y., Yao, L., Cai, X., & Ibrahim, A. I. (2025). Lateral behavior of circular concrete columns reinforced with partially unbonded steel basalt-fiber composite bars and hybrid stirrups. Engineering Structures, 332, 120051. doi:10.1016/j.engstruct.2025.120051.
[12] Huang, Z., Chen, W., Hao, H., Siew, A. U., Huang, T., Ahmed, M., & Pham, T. M. (2024). Lateral impact performances of geopolymer concrete columns reinforced with steel-BFRP composite bars. Construction and Building Materials, 411, 134411. doi:10.1016/j.conbuildmat.2023.134411.
[13] Ge, W., Zhang, S., Zhang, Z., Guan, Z., Ashour, A., Sun, C., Lu, W., & Cao, D. (2023). Eccentric compression behavior of Steel-FRP composite bars RC columns under coupling action of chloride corrosion and load. Structures, 50, 1051–1068. doi:10.1016/j.istruc.2023.02.090.
[14] Xu, L., Wang, X., Dong, B., Yang, X., & Pan, J. (2024). Seismic behaviors of steel-FRP composite bar-reinforced engineered cementitious composites columns under reversed cyclic loads. Engineering Structures, 316(1), 118571. doi:10.1016/j.engstruct.2024.118571.
[15] Ali, M. A., & El-Salakawy, E. (2016). Seismic Performance of GFRP-Reinforced Concrete Rectangular Columns. Journal of Composites for Construction, 20(3), 1–12. doi:10.1061/(asce)cc.1943-5614.0000637.
[16] ASTM D7205/D7205M-06. (2011). Standard Test Method for Tensile Properties of Fiber Reinforced Polymer Matrix Composite Bars. ASTM International, Pennsylvania, United States. doi:10.1520/D7205_D7205M-06.
[17] ASTM C39/C39M-21. (2023). Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens. ASTM International, Pennsylvania, United States. doi.10.1520/C0039_C0039M-21.
[18] Alsayed, S. H. (1998). Flexural behaviour of concrete beams reinforced with GFRP bars. Cement and Concrete Composites, 20(1), 1–11. doi:10.1016/s0958-9465(97)00061-9.
[19] Jeddian, S., Ghazi, M., & Sarafraz, M. E. (2024). Experimental study on the seismic performance of GFRP reinforced concrete columns actively confined by AFRP strips. Structures, 62, 106248. doi:10.1016/j.istruc.2024.106248.
[20] Sharbatdar, M. K. (2003). Concrete columns and beams reinforced with FRP bars and grids under monotonic and reversed cyclic loading. Ph.D. Thesis, University of Ottawa, Ottawa, Canada.
[21] Ozcebe, G., & Saatcioglu, M. (1987). Confinement of Concrete Columns for Seismic Loading. ACI Structural Journal, 84(4), 308–315. doi:10.14359/1660.
[22] Abbasnia, R., Ahmadi, R., & Ziaadiny, H. (2012). Effect of confinement level, aspect ratio and concrete strength on the cyclic stress-strain behavior of FRP-confined concrete prisms. Composites Part B: Engineering, 43(2), 825–831. doi:10.1016/j.compositesb.2011.11.008.
[23] Park, R., & Paulay, T. (1991). Reinforced concrete structures. John Wiley & Sons, Hoboken, United States.
[24] Chopra, A. K. (2017). Dynamics of Structures: Theory and applications to earthquake engineering. Pearson, London, United Kingdom.
[25] ASCE/SEI 7-16. (2016). Minimum design loads and associated criteria for buildings and other structures. American Society of Civil Engineers, Reston, United States. doi:10.1061/9780784414248.
[26] ACI 318-19. (2019). Building Code Requirements for Structural Concrete (ACI 318-19) and Commentary (ACI 318R-19). American Concrete Institute (ACI), Farmington Hills, United States.
[27] CSA S806-12. (2012). Design and construction of building structures with fiber-reinforced polymers. Canadian Standards Association, Toronto, Canada.
[28] CSA A23.3-19. (2019). Design of concrete structures. Canadian Standards Association, Toronto, Canada.
[29] National Research Council Canada. (2015). National Building Code of Canada. National Research Council Canada, Ottawa, Canada.
[30] EN 1998-1. (2004). Eurocode 8: Design of structures for earthquake resistance. European Committee for Standardization, Brussels, Belgium.
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.