Energy Optimization in Residential Buildings: Evaluating PCM-CLT Wall Systems Across U.S. Climate Zones

Amit Deb Nath, Ahmed Abdelaty, Aysegul Demir Dilsiz, Mohamed S. Yamany

Abstract


Buildings consume approximately 43% of their electricity for space heating and cooling, emphasizing the need for energy-efficient solutions. Among the strategies to reduce this demand, phase change materials (PCM) have been recognized for their potential to enhance thermal performance. While PCM has been extensively studied in building envelopes, its integration with cross-laminated timber (CLT) remains unexplored. Additionally, the optimal placement of PCM within wall assemblies lacks consensus, as previous studies have reported inconsistent findings. This study addresses these research gaps by investigating the performance of PCM-integrated CLT (PCM-CLT) wall systems across 17 climate zones in the United States. Using EnergyPlus simulation, five wall configurations were analyzed, including three PCM-CLT configurations with PCM positioned at different locations within the assembly. The results demonstrate that the PCM-CLT system significantly enhances energy efficiency, achieving cooling energy savings of up to 72.48% and heating energy savings of up to 96.94% in certain locations. Moreover, the findings reveal that placing PCM on the interior side of CLT walls consistently outperforms other configurations across all climate zones. Furthermore, PCM-CLT walls help reduce peak energy loads, alleviating stress on power grids. This research contributes to enhancing building energy performance through PCM-CLT integration, providing valuable insights for both retrofitting and new construction, and advancing sustainable building design.

 

Doi: 10.28991/CEJ-2025-011-05-05

Full Text: PDF


Keywords


Buildings; Energy Efficiency; Space Heating and Cooling; Phase Change Materials; Cross Laminated Timber.

References


IEA. (2025). Buildings - Energy System, International Energy Agency (IEA), Paris, France. Available online: https://www.iea.org/energy-system/buildings (accessed on April 2025)

NREL. (2023). NREL Researchers Reveal How Buildings Across United States Do—and Could—Use Energy. National Renewable Energy Laboratory (NREL), Golden, United States. Available online: https://www.nrel.gov/news/features/2023/nrel-researchers-reveal-how-buildings-across-the-united-states-do-and-could-use-energy.html. (accessed on April 2025).

IEA. (2019). Heat – Renewables 2019 – Analysis. International Energy Agency (IEA), Paris, France. Available online: https://www.iea.org/reports/renewables-2019/heat. (accessed on May 2025).

IEA. (2019). Heating. International Energy Agency (IEA), Paris, France. Available online: https://www.iea.org/energy-system/buildings/heating (accessed on April 2025).

Ritchie, H. (2024). Air conditioning causes around 3% of greenhouse gas emissions. How will this change in the future?. Our World in Data, Oxford, United Kingdom. Available online: https://ourworldindata.org/air-conditioning-causes-around-greenhouse-gas-emissions-will-change-future (accessed on April 2025).

IRENA (2025). Power to heat and cooling: Status, International Renewable Energy Agency, Masdar City, United Arab Emirates. Available online: https://www.irena.org/Innovation-landscape-for-smart-electrification/Power-to-heat-and-cooling/Status (accessed on April 2025).

U.S. Department of Energy (2025). Why Energy Efficiency Matters, United States Department of Energy, Washington, United States. Available online: https://www.energy.gov/energysaver/why-energy-efficiency-matters (accessed on April 2025).

EIA. (2023). U Use of energy explained Energy use in commercial buildings. U.S. Energy Information Administration (EIA), Washington, United States. Available online: https://www.eia.gov/energyexplained/use-of-energy/commercial-buildings.php (accessed on April 2025)

U.S. Department of Energy (2025). Data and Analysis for Buildings Sector Innovation. Decarbonizing the U.S. Economy by 2050: A National Blueprint for the Buildings Sector, United States Department of Energy, Washington, United States. Available online: https://www.energy.gov/eere/decarbonizing-us-economy-2050-national-blueprint-buildings-sector (accessed on April 2025).

Pandey, B., Banerjee, R., & Sharma, A. (2021). Coupled EnergyPlus and CFD analysis of PCM for thermal management of buildings. Energy and Buildings, 231, 110598. doi:10.1016/j.enbuild.2020.110598.

Anand, V., Kadiri, V. L., & Putcha, C. (2023). Passive buildings: a state-of-the-art review. Journal of Infrastructure Preservation and Resilience, 4(1), 3. doi:10.1186/s43065-022-00068-z.

Hassan, F., Jamil, F., Hussain, A., Ali, H. M., Janjua, M. M., Khushnood, S., Farhan, M., Altaf, K., Said, Z., & Li, C. (2022). Recent advancements in latent heat phase change materials and their applications for thermal energy storage and buildings: A state of the art review. Sustainable Energy Technologies and Assessments, 49, 101646. doi:10.1016/j.seta.2021.101646.

Xu, C., Zhang, Y., & Qiu, D. (2024). The Regulation of Temperature Fluctuations and Energy Consumption in Buildings Using Phase Change Material–Gypsum Boards in Summer. Buildings, 14(11), 3387. doi:10.3390/buildings14113387.

Frigione, M., Lettieri, M., & Sarcinella, A. (2019). Phase change materials for energy efficiency in buildings and their use in mortars. Materials, 12(8), 1260. doi:10.3390/ma12081260.

Kishore, R. A., Bianchi, M. V. A., Booten, C., Vidal, J., & Jackson, R. (2020). Optimizing PCM-integrated walls for potential energy savings in U.S. Buildings. Energy and Buildings, 226, 110355. doi:10.1016/j.enbuild.2020.110355.

Soleiman Dehkordi, B., & Afrand, M. (2022). Energy-saving owing to using PCM into buildings: Considering of hot and cold climate region. Sustainable Energy Technologies and Assessments, 52, 102112. doi:10.1016/j.seta.2022.102112.

Baylis, C., & Cruickshank, C. A. (2024). Parametric analysis of phase change materials within cold climate buildings: Effects of implementation location and properties. Energy and Buildings, 303, 113822. doi:10.1016/j.enbuild.2023.113822.

Ahangari, M., & Maerefat, M. (2019). An innovative PCM system for thermal comfort improvement and energy demand reduction in building under different climate conditions. Sustainable Cities and Society, 44, 120–129. doi:10.1016/j.scs.2018.09.008.

Marin, P., Saffari, M., de Gracia, A., Zhu, X., Farid, M. M., Cabeza, L. F., & Ushak, S. (2016). Energy savings due to the use of PCM for relocatable lightweight buildings passive heating and cooling in different weather conditions. Energy and Buildings, 129, 274–283. doi:10.1016/j.enbuild.2016.08.007.

Al-Yasiri, Q., & Szabó, M. (2021). Incorporation of phase change materials into building envelope for thermal comfort and energy saving: A comprehensive analysis. Journal of Building Engineering, 36, 102122. doi:10.1016/j.jobe.2020.102122.

Moore, A. (2022). 5 Benefits of Building with Cross-Laminated Timber. College of Natural Resources News, Raleigh, United States. Available online: https://cnr.ncsu.edu/news/2022/08/5-benefits-cross-laminated-timber/ (accessed on April 2021).

Park, J., Chang, S. J., & Kim, S. (2025). Enhancing thermal performance of cross-laminated timber using phase change materials and biochar composites. Journal of Energy Storage, 109, 115198. doi:10.1016/j.est.2024.115198.

He, Y., Li, S., Ariffin, M. M., Abu-Hamdeh, N. H., Karimipour, A., Hatamleh, R. I., Viet, P. H. H., & Karimipour, A. (2024). New structure for better thermal resistance of building with phase change material: Response to milder thermal change than common walls. Case Studies in Thermal Engineering, 62, 105189. doi:10.1016/j.csite.2024.105189.

Cascone, Y., Capozzoli, A., & Perino, M. (2018). Optimisation analysis of PCM-enhanced opaque building envelope components for the energy retrofitting of office buildings in Mediterranean climates. Applied Energy, 211, 929–953. doi:10.1016/j.apenergy.2017.11.081.

Lagou, A., Kylili, A., Šadauskienė, J., & Fokaides, P. A. (2019). Numerical investigation of phase change materials (PCM) optimal melting properties and position in building elements under diverse conditions. Construction and Building Materials, 225, 452–464. doi:10.1016/j.conbuildmat.2019.07.199.

Arıcı, M., Bilgin, F., Nižetić, S., & Karabay, H. (2020). PCM integrated to external building walls: An optimization study on maximum activation of latent heat. Applied Thermal Engineering, 165, 114560. doi:10.1016/j.applthermaleng.2019.114560.

Darvishi, F., Markarian, E., Ziasistani, N., Ziasistani, N., & Javanshir, A. (2019). Energy performance assessment of PCM buildings considering multiple factors. 5th International Conference on Power Generation Systems and Renewable Energy Technologies, PGSRET 2019, 1–5. doi:10.1109/PGSRET.2019.8882672.

Kalbasi, R., Samali, B., & Afrand, M. (2023). Taking benefits of using PCMs in buildings to meet energy efficiency criteria in net zero by 2050. Chemosphere, 311, 137100. doi:10.1016/j.chemosphere.2022.137100.

Kawaguchi, T., Sakai, H., Sheng, N., Kurniawan, A., & Nomura, T. (2020). Microencapsulation of Zn-Al alloy as a new phase change material for middle-high-temperature thermal energy storage applications. Applied Energy, 276, 115487. doi:10.1016/j.apenergy.2020.115487.

Wang, X., Li, W., Luo, Z., Wang, K., & Shah, S. P. (2022). A critical review on phase change materials (PCM) for sustainable and energy efficient building: Design, characteristic, performance and application. Energy and Buildings, 260, 111923. doi:10.1016/j.enbuild.2022.111923.

Dora, S., Kuznik, F., & Mini, K. M. (2025). A novel PCM-based foam concrete for heat transfer in buildings -Experimental developments and simulation modelling. Journal of Energy Storage, 105, 114625. doi:10.1016/j.est.2024.114625.

Kwon, M. S., Jin, X., Kim, Y. C., & Hu, J. W. (2024). Development of microencapsulated PCM concrete with improved strength and long-term thermal performance using MWCNTs. Construction and Building Materials, 442, 137609. doi:10.1016/j.conbuildmat.2024.137609.

Lachheb, M., Younsi, Z., Youssef, N., & Bouadila, S. (2024). Enhancing building energy efficiency and thermal performance with PCM-Integrated brick walls: A comprehensive review. Building and Environment, 256, 111476. doi:10.1016/j.buildenv.2024.111476.

Shi, C., Zhao, Q., Wang, P., & Yang, L. (2023). Preparation, performance study and application simulation of gypsum-paraffin/EG composite phase change building wallboard. Journal of Building Engineering, 65, 105813. doi:10.1016/j.jobe.2022.105813.

Liu, Z., Hou, J., Meng, X., & Dewancker, B. J. (2021). A numerical study on the effect of phase-change material (PCM) parameters on the thermal performance of lightweight building walls. Case Studies in Construction Materials, 15, 758. doi:10.1016/j.cscm.2021.e00758.

Fleisher, G. (2024). Mass Timber Construction: Building the Future with Wood. Modular Home Source, Toronto, Canada. Available online: https://modularhomesource.com/mass-timber-construction-building-the-future-with-wood/ (accessed on April 2025).

Skanska (2025). The future of mass timber: key trends to watch, Skanska, New York, United States. Available online: https://www.usa.skanska.com/who-we-are/media/constructive-thinking/the-future-of-mass-timber-key-trends-to-watch/ (accessed on April 2025).

Brandner, R., Flatscher, G., Ringhofer, A., Schickhofer, G., & Thiel, A. (2016). Cross laminated timber (CLT): overview and development. European Journal of Wood and Wood Products, 74(3), 331–351. doi:10.1007/s00107-015-0999-5.

Hiziroglu, S. (2019). Cross Laminated Timber (CLT) as a Value-Added Product. Oklahoma State University, Stillwater, United States. Available online: https://extension.okstate.edu/fact-sheets/cross-laminated-timber-clt-as-a-value-added-product.html (accessed on April 2025).

Setter, L., Smoorenburg, E., Wijesuriya, S., & Tabares-Velasco, P. C. (2019). Energy and hygrothermal performance of cross laminated timber single-family homes subjected to constant and variable electric rates. Journal of Building Engineering, 25, 100784. doi:10.1016/j.jobe.2019.100784.

Pierobon, F., Huang, M., Simonen, K., & Ganguly, I. (2019). Environmental benefits of using hybrid CLT structure in midrise non-residential construction: An LCA based comparative case study in the U.S. Pacific Northwest. Journal of Building Engineering, 26, 100862. doi:10.1016/j.jobe.2019.100862.

Shin, B., Wi, S., & Kim, S. (2023). Assessing the environmental impact of using CLT-hybrid walls as a sustainable alternative in high-rise residential buildings. Energy and Buildings, 294, 113228. doi:10.1016/j.enbuild.2023.113228.

Hartig, J. U., & Haller, P. (2024). Combustion characteristics and mechanical properties of wood impregnated with a paraffinic phase change material. European Journal of Wood and Wood Products, 82(2), 329–339. doi:10.1007/s00107-023-02016-4.

Li, Z. X., Al-Rashed, A. A. A. A., Rostamzadeh, M., Kalbasi, R., Shahsavar, A., & Afrand, M. (2019). Heat transfer reduction in buildings by embedding phase change material in multi-layer walls: Effects of repositioning, thermophysical properties and thickness of PCM. Energy Conversion and Management, 195, 43–56. doi:10.1016/j.enconman.2019.04.075.

EnergyPlus (2025). Table of Contents: Input Output Reference — EnergyPlus 22.2, University of Illinois, Champaign, United States. Available online: https://bigladdersoftware.com/epx/docs/22-2/input-output-reference/ (accessed on April 2025).

Tabares-Velasco, P. C., Christensen, C., & Bianchi, M. (2012). Verification and validation of EnergyPlus phase change material model for opaque wall assemblies. Building and Environment, 54, 186–196. doi:10.1016/j.buildenv.2012.02.019.

Abbassi, Y., Baniasadi, E., & Ahmadikia, H. (2022). Transient energy storage in phase change materials, development and simulation of a new TRNSYS component. Journal of Building Engineering, 50, 104188. doi:10.1016/j.jobe.2022.104188.

Mousavi, S., Rismanchi, B., Brey, S., & Aye, L. (2023). Development and validation of a transient simulation model of a full-scale PCM embedded radiant chilled ceiling. Building Simulation, 16(6), 813–829. doi:10.1007/s12273-023-0985-5.

Xu, X., Xie, J., Zhang, X., Chen, G., & Liu, J. (2025). A new validated TRNSYS module for phase change material-filled multi-glazed windows. Applied Thermal Engineering, 258, 124706. doi:10.1016/j.applthermaleng.2024.124706.

Wieprzkowicz, A., & Heim, D. (2020). Modelling of thermal processes in a glazing structure with temperature dependent optical properties - An example of PCM-window. Renewable Energy, 160, 653–662. doi:10.1016/j.renene.2020.06.146.

Su, W., Darkwa, J., Kokogiannakis, G., & Li, Y. (2020). Thermal Performance of Various Microencapsulated Phase Change Material Drywalls Integrated into Buildings: A Numerical Investigation by ESP-r. Proceedings of the 11th International Symposium on Heating, Ventilation and Air Conditioning (ISHVAC 2019). ISHVAC 2019, Environmental Science and Engineering, Springer, Singapore. doi:10.1007/978-981-13-9520-8_87.

Yin, H., Norouziasas, A., & Hamdy, M. (2024). PCM as an energy flexibility asset: How design and operation can be optimized for heating in residential buildings? Energy and Buildings, 322, 114721. doi:10.1016/j.enbuild.2024.114721.

Millers, R., Korjakins, A., Lešinskis, A., & Borodinecs, A. (2020). Cooling panel with integrated PCM layer: A verified simulation study. Energies, 13(21), 5715. doi:10.3390/en13215715.

Mazzeo, D., Matera, N., Cornaro, C., Oliveti, G., Romagnoni, P., & De Santoli, L. (2020). EnergyPlus, IDA ICE and TRNSYS predictive simulation accuracy for building thermal behaviour evaluation by using an experimental campaign in solar test boxes with and without a PCM module. Energy and Buildings, 212, 109812. doi:10.1016/j.enbuild.2020.109812.

Tabares-Velasco, P. C., Christensen, C., & Bianchi, M. V. A. (2012). Validation methodology to allow simulated peak reduction and energy performance analysis of residential building envelope with phase change materials. ASHRAE Transactions, 118(PART 2), 90–97.

Alam, M., Jamil, H., Sanjayan, J., & Wilson, J. (2014). Energy saving potential of phase change materials in major Australian cities. Energy and Buildings, 78, 192–201. doi:10.1016/j.enbuild.2014.04.027.

Kuznik, F., & Virgone, J. (2009). Experimental assessment of a phase change material for wall building use. Applied Energy, 86(10), 2038–2046. doi:10.1016/j.apenergy.2009.01.004.

Wijesuriya, S., Tabares-Velasco, P. C., Biswas, K., & Heim, D. (2020). Empirical validation and comparison of PCM modeling algorithms commonly used in building energy and hygrothermal software. Building and Environment, 173, 106750. doi:10.1016/j.buildenv.2020.106750.

Cao, S. (2010). State of the art thermal energy storage solutions for high performance buildings. Master Thesis, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.

Biswas, K., Lu, J., Soroushian, P., & Shrestha, S. (2014). Combined experimental and numerical evaluation of a prototype nano-PCM enhanced wallboard. Applied Energy, 131, 517–529. doi:10.1016/j.apenergy.2014.02.047.

IRC. (2021). 2021 International Residential Code (IRC). International Code Council, Washington, United States.

NDS. (2024). National Design Specification (NDS) for Wood Construction. American National Standards Institute (ANSI), Washington, United States.

Liu, Z., Hou, J., Huang, Y., Zhang, J., Meng, X., & Dewancker, B. J. (2022). Influence of phase change material (PCM) parameters on the thermal performance of lightweight building walls with different thermal resistances. Case Studies in Thermal Engineering, 31, 101844. doi:10.1016/j.csite.2022.101844.

Hasan, M. I., Basher, H. O., & Shdhan, A. O. (2018). Experimental investigation of phase change materials for insulation of residential buildings. Sustainable Cities and Society, 36, 42–58. doi:10.1016/j.scs.2017.10.009.

Liu, Z., Hou, J., Wei, D., Meng, X., & Dewancker, B. J. (2022). Thermal performance analysis of lightweight building walls in different directions integrated with phase change materials (PCM). Case Studies in Thermal Engineering, 40, 102536. doi:10.1016/j.csite.2022.102536.

Teamah, H. M. (2021). Comprehensive review of the application of phase change materials in residential heating applications. Alexandria Engineering Journal, 60(4), 3829–3843. doi:10.1016/j.aej.2021.02.053.

ANSI/ASHRAE Standard-55. (2020). Thermal environmental conditions for human occupancy. American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE), Peachtree, United States.

Rubitherm Technologies (2025). PCM RT-line: Rubitherm Technologies GmbH, Berlin, Germany. Available online: https://www.rubitherm.eu/en/productcategory/organische-pcm-rt (accessed on April 2025).

ICC. (2021). CHAPTER 5 FLOORS - R503.2 Wood structural panel sheathing. International Code Council (ICC), Washington, United States.

European Panel Federation. (2025). Oriented strand board. Available online: https://europanels.org/the-wood-based-panel-industry/types-of-wood-based-panels-economic-impact/oriented-strand-board/ (accessed on April 2025).

ICC. (2021). 2021 International Energy Conservation Code (IECC). International Code Council (ICC), Washington, United States.

Owens Corning Insulation. (2025). FOAMULAR® XPS Insulation Products. Owens Corning Insulation, Toledo, United States. Available online: https://www.owenscorning.com/en-us/insulation/commercial/foamular-xps (accessed on April 2025).

CLT Profi. (2025). Technical Specification of CLT Panels. CLT Profi, Riga, Latvia. Available online: https://cltprofi.com/clt-panels-technical-information/ (accessed on April 2025).

Cho, H. M., Wi, S., Chang, S. J., & Kim, S. (2019). Hygrothermal properties analysis of cross-laminated timber wall with internal and external insulation systems. Journal of Cleaner Production, 231, 1353–1363. doi:10.1016/j.jclepro.2019.05.197.

Antonopoulos, C., Gilbride, T., Margiotta, E., & Kaltreider, C. (2022). Guide to Determining Climate Zone by County: Building America and IECC 2021 Updates. Office of Scientific and Technical Information (OSTI). doi:10.2172/1893981.

ANSI/ASHRAE 169-2020. (2020). Climatic Data for Building Design Standards. American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE), Peachtree, United States.

Climate.OneBuilding.Org. (2025). Repository of Building Simulation Climate Data: From the Creators of the EPW. Available online: https://climate.onebuilding.org/ (accessed on April 2025).

AHRI 310/380. (2017). Packaged Terminal Air-Conditioners and Heat Pumps (CSA-C744-17). Air-Conditioning, Heating, and Refrigeration Institute, Arlington, United States.

EnergyPlus (2025). Documentation. EnergyPlus, U.S. Department of Energy, Washington, United States. Available online: https://energyplus.net/documentation (accessed on April 2025).

Li, Y., Long, E., Jin, Z., Li, J., Meng, X., Zhou, J., Xu, L., & Xiao, D. (2019). Heat storage and release characteristics of composite phase change wall under different intermittent heating conditions. Science and Technology for the Built Environment, 25(3), 336–345. doi:10.1080/23744731.2018.1527137.

Wang, J., Long, E., Qin, W., & Xu, L. (2013). Ultrathin envelope thermal performance improvement of prefab house by integrating with phase change material. Energy and Buildings, 67, 210–216. doi:10.1016/j.enbuild.2013.08.029.

Gbekou, F. K., Belloum, R., Chennouf, N., Agoudjil, B., Boudenne, A., & Benzarti, K. (2024). Thermal performance of a building envelope including microencapsulated phase change materials (PCMs): A multiscale experimental and numerical investigation. Building and Environment, 253, 111294. doi:10.1016/j.buildenv.2024.111294.

ANSI/ASHRAE Standard 169-2020. (2020). Climatic Data for Building Design Standards. American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE), Peachtree, United States.

Schmidt, E. L., Riggio, M., Barbosa, A. R., & Mugabo, I. (2019). Environmental response of a CLT floor panel: Lessons for moisture management and monitoring of mass timber buildings. Building and Environment, 148, 609–622. doi:10.1016/j.buildenv.2018.11.038.

Kukk, V., Bella, A., Kers, J., & Kalamees, T. (2021). Airtightness of cross-laminated timber envelopes: Influence of moisture content, indoor humidity, orientation, and assembly. Journal of Building Engineering, 44, 102610. doi:10.1016/j.jobe.2021.102610.

Hiziroglu, S. (2017). Dimensional Changes in Wood. Oklahoma State University, Stillwater, United States. Available online: https://extension.okstate.edu/fact-sheets/dimensional-changes-in-wood.html (accessed on April 2025).

Labihi, A., Ouikhalfan, M., Chehouani, H., & Benhamou, B. (2021). PCM incorporation into a cavity wall as an insulator and phase shifter: Experimental investigations and numerical modeling. International Journal of Energy Research, 45(11), 16728–16740. doi:10.1002/er.6918.

Gholamibozanjani, G., & Farid, M. (2020). Peak load shifting using a price-based control in PCM-enhanced buildings. Solar Energy. CRC Press, Boca Raton, United States. doi:10.1016/j.solener.2020.09.016.

Saffari, M., Roe, C., & Finn, D. P. (2022). Improving the building energy flexibility using PCM-enhanced envelopes. Applied Thermal Engineering, 217, 119092. doi:10.1016/j.applthermaleng.2022.119092.


Full Text: PDF

DOI: 10.28991/CEJ-2025-011-05-05

Refbacks

  • There are currently no refbacks.




Copyright (c) 2025 Amit Deb Nath, Ahmed Abdelaty, Aysegul Demir Demir, Mohamed Yamany

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message