Evaluating the Microstructure and Strength of Geopolymer Mud Blocks for Sustainable Architecture

A. Kandasamy, B. Ramesh, Mahmoud Al Khazaleh, K. Sabari

Abstract


This study investigates the physio-mechanical, microstructural, and durability characteristics of Geopolymer Mud Blocks (GMB) as a sustainable alternative to traditional Soil Stabilized Blocks (SSB). Utilizing locally available Alumino-Silicate Sources (ASS) and Alkali-Activated Materials (AAM), GMB were produced with varying molarity levels (6M, 7M, and 8M) and mix proportions (M1 to M3). Experimental results reveal that compressive strength increased by 10–20% with molarity escalation from 6M to 8M. The highest compressive strength of over 50 MPa, achieved with the M4 mix at 8M, equaled M50-grade concrete, making it suitable for load-bearing walls in earthquake-resistant structures. Durability tests demonstrated less than 10% water absorption, indicating low permeability. Type B6 (6% AAS, 8M, 28 days) exhibited superior performance, attaining the highest compressive strength of 47.32 MPa and prism strength of 33.12 MPa. Additionally, it showed commendable durability metrics, including water absorption at 5.20%, chloride diffusion at 1.87%, acid diffusion at 3.33%, and sulphate diffusion at 1.05%. The dense matrix and minimal porosity of this mix, resulting from the use of distilled water and optimal binder content, significantly enhanced its strength and durability. Type C6 (6% AAS, 8M, 28 days) exhibited the weakest performance, characterized by high porosity, suboptimal matrix quality, and unfavorable durability indicators, such as water absorption (10.33%) and chloride diffusion (4.47%). Type B6 demonstrates the highest effectiveness, providing an optimal balance of strength and durability, whereas Type C6 exhibits the lowest efficiency. GMB exhibited enhanced resistance to acid, sulphate, and chloride attacks with increased molarity. XRD analysis confirmed the geopolymerization process, with significant diffraction peak changes. SEM images revealed denser microstructures with higher molarity, correlating with increased strength. The study concludes that GMBs offer superior strength, durability, and cost-strength efficiency compared to SSBs, promoting sustainable construction practices.

 

Doi: 10.28991/CEJ-2025-011-04-09

Full Text: PDF


Keywords


Geopolymer Mud Blocks (GMB); Soil Stabilized Blocks (SSB); Alumino-Silicate Sources (ASS); Alkali-Activated Materials (AAM); Durability Tests.

References


Venkatarama Reddy, B. V. (2012). Stabilised soil blocks for structural masonry in earth construction. Modern Earth Buildings: Materials, Engineering, Constructions and Applications, 324-363. doi:10.1533/9780857096166.3.324.

Kolay, P. K., Kumar, S., & Tiwari, D. (2013). Improvement of Bearing Capacity of Shallow Foundation on Geogrid Reinforced Silty Clay and Sand. Journal of Construction Engineering, 2013(1), 1–10. doi:10.1155/2013/293809.

Medjo Eko, R., Offa, E. D., Yatchoupou Ngatcha, T., & Seba Minsili, L. (2012). Potential of salvaged steel fibers for reinforcement of unfired earth blocks. Construction and Building Materials, 35, 340–346. doi:10.1016/j.conbuildmat.2011.11.050.

Midhin, M. A. K., & Wong, L. S. (2024). Investigating Mechanical Properties of Metakaolin-Based Geopolymer Concrete Optimized with Wastepaper Ash and Plastic Granules. Civil Engineering Journal, 10, 209-234. doi:10.28991/CEJ-SP2024-010-011.

Zhang, M. H., & Islam, J. (2012). Use of nano-silica to reduce setting time and increase early strength of concretes with high volumes of fly ash or slag. Construction and Building Materials, 29, 573–580. doi:10.1016/j.conbuildmat.2011.11.013.

Pacheco-Torgal, F., & Jalali, S. (2012). Earth construction: Lessons from the past for future eco-efficient construction. Construction and Building Materials, 29, 512–519. doi:10.1016/j.conbuildmat.2011.10.054.

Gavigan, D., Goggins, J., & McCabe, B. (2012). Strength and durability performance of stabilised soil block masonry units. International Association for Bridge and Structural Engineering: IABSE Symposium Report, 98(6), 34-41.

Kandasamy, A., & Rachel, P. P. (2025). Experimental Investigation of Novel Soil-Stabilized Blocks Using Lime and Cement. Signals and Communication Technology: Vol. Part F76, 875–881. doi:10.1007/978-3-031-68952-9_113.

Islam, M. S., Elahi, T. E., Shahriar, A. R., & Mumtaz, N. (2020). Effectiveness of fly ash and cement for compressed stabilized earth block construction. Construction and Building Materials, 255, 119392. doi:10.1016/j.conbuildmat.2020.119392.

Lavie Arsène, M. I., Frédéric, C., & Nathalie, F. (2020). Improvement of lifetime of compressed earth blocks by adding limestone, sandstone and porphyry aggregates. Journal of Building Engineering, 29. doi:10.1016/j.jobe.2019.101155.

Rivera, J. F., Mejía de Gutiérrez, R., Ramirez-Benavides, S., & Orobio, A. (2020). Compressed and stabilized soil blocks with fly ash-based alkali-activated cements. Construction and Building Materials, 264, 120285. doi:10.1016/j.conbuildmat.2020.120285.

Vignesh, N. P., Mahendran, K., Arunachelam, N., & Ali, M. (2020). Effects of Industrial and Agricultural Wastes on Mud Blocks Using Geopolymer. Advances in Civil Engineering, 1054176. doi:10.1155/2020/1054176.

Kandasamy, A., Priya Rachel, P., Ramesh, B., Khazaleh, M. A. L., & Krishna Kumar, P. (2024). From Brown Earth to Green Bricks—A Critical Analysis of Stabilized Mud Blocks for Sustainable Construction. Lecture Notes in Civil Engineering: Vol. 528 LNCE, Springer Nature, Singapore. doi:10.1007/978-981-97-4844-0_60.

Kandasamy, A., & Ramesh, B. (2025). GMB: A Comprehensive Review of Material Composition, Structural Properties, and Ecological Impacts. Materials Science Forum, 1144, 87–98. doi:10.4028/p-Elof10.

Wong, C. L., Mo, K. H., Alengaram, U. J., & Yap, S. P. (2020). Mechanical strength and permeation properties of high calcium fly ash-based geopolymer containing recycled brick powder. Journal of Building Engineering, 32(June), 101655. doi:10.1016/j.jobe.2020.101655.

Raavi, S. S. D., & Tripura, D. D. (2020). Predicting and evaluating the engineering properties of unstabilized and cement stabilized fibre reinforced rammed earth blocks. Construction and Building Materials, 262, 120845. doi:10.1016/j.conbuildmat.2020.120845.

Thennarasan Latha, A., Murugesan, B., & Skariah Thomas, B. (2023). Compressed earth block reinforced with sisal fiber and stabilized with cement: Manual compaction procedure and influence of addition on mechanical properties. Materials Today: Proceedings, 1-9. doi:10.1016/j.matpr.2023.04.373.

Qian, L. P., Ahmad, M. R., Lao, J. C., & Dai, J. G. (2023). Recycling of red mud and flue gas residues in geopolymer aggregates (GPA) for sustainable concrete. Resources, Conservation and Recycling, 191, 106893. doi:10.1016/j.resconrec.2023.106893.

Kiki, G., Nshimiyimana, P., Kouchadé, C., Messan, A., Houngan, A., & André, P. (2023). Physico–mechanical and durability performances of compressed earth blocks incorporating quackgrass straw: An alternative to fired clay. Construction and Building Materials, 403, 133064. doi:10.1016/j.conbuildmat.2023.133064.

Razeghi, H. R., Geranghadr, A., Safaee, F., Ghadir, P., & Javadi, A. A. (2024). Effect of CO2 exposure on the mechanical strength of geopolymer-stabilized sandy soils. Journal of Rock Mechanics and Geotechnical Engineering, 16(2), 670–681. doi:10.1016/j.jrmge.2023.04.017.

Rivas-Aybar, D., John, M., & Biswas, W. (2023). Can the Hemp Industry Improve the Sustainability Performance of the Australian Construction Sector? Buildings, 13(6), 17. doi:10.3390/buildings13061504.

M S, R. (2020). Compressed Geopolymer Mud Blocks Testing and Production - A Review. International Journal for Research in Applied Science and Engineering Technology, 8(6), 2283–2288. doi:10.22214/ijraset.2020.6367.

Tripura, D. D., & Kasinikota, P. (2023). Axial load behavior of unreinforced and reinforced hollow interlocking compressed stabilized earth block masonry walls. Construction and Building Materials, 407(September), 133451. doi:10.1016/j.conbuildmat.2023.133451.

Zhou, T., Zhang, H., Zhang, Z., Zhang, L., & Tan, W. (2023). Investigation of intralayer and interlayer shear properties of stabilized rammed earth by direct shear tests. Construction and Building Materials, 367(January), 130320. doi:10.1016/j.conbuildmat.2023.130320.

Abedi, M., Hassanshahi, O., Rashiddel, A., Ashtari, H., Seddik Meddah, M., Dias, D., Arjomand, M. A., & Keong Choong, K. (2023). A sustainable cementitious composite reinforced with natural fibers: An experimental and numerical study. Construction and Building Materials, 378(September 2022), 131093. doi:10.1016/j.conbuildmat.2023.131093.

Kandasamy, A., & Rachel, P. P. (2023). An Experimental Evaluation of the Impact of Moulding Moisture Content on the Compressive Strength of Unstabilised Compressed Earth Blocks. E3S Web of Conferences, 387(04014), 1–12. doi:10.1051/e3sconf/202338704014.

Befikadu Zewudie, B. (2023). Experimental Study on the Production and Mechanical Behavior of Compressed Lime-Cement-Stabilized Interlock Soil Blocks. Advances in Materials Science and Engineering, 2023. doi:10.1155/2023/2933398.

Preethi, R. K., & Venkatarama Reddy, B. V. (2020). Experimental investigations on geopolymer stabilised compressed earth products. Construction and Building Materials, 257, 119563. doi:10.1016/j.conbuildmat.2020.119563.

Wang, Y., Liu, X., Tang, B., Li, Y., Zhang, W., & Xue, Y. (2021). Effect of Ca/(Si + Al) on red mud based eco-friendly revetment block: Microstructure, durability and environmental performance. Construction and Building Materials, 304(February), 124618. doi:10.1016/j.conbuildmat.2021.124618.

Kumar, S. (2015). The properties and performance of red mud-based geopolymeric masonry blocks. In Eco-Efficient Masonry Bricks and Blocks, 311-328. doi:10.1016/B978-1-78242-305-8.00014-0.

Singh, S., Aswath, M. U., & Ranganath, R. V. (2020). Performance assessment of bricks and prisms: Red mud based geopolymer composite. Journal of Building Engineering, 32(April), 101462. doi:10.1016/j.jobe.2020.101462.

Sudhir, M. R., Beulah, M., Sasha Rai, P., & Gayathri, G. (2021). A microstructure exploration and compressive strength determination of red mud bricks prepared using industrial wastes. Materials Today: Proceedings, 46, 163–169. doi:10.1016/j.matpr.2020.07.171.

Schlesinger, M. E., King, M. J., Sole, K. C., & Davenport, W. G. (2015). Mud Stablized Blocks Production and Use: Technical Manual. United Nations Industrial Development Organisation, Vienna, Austria.

Sabari, K., Muniappan, A., Deepanraj, B., & Jinnah Sheik Mohamed, M. (2024). Advanced Mechanical Performance Optimization of Friction Stir Welded AZ31 Magnesium Alloy Using Artificial Neural Network and Grey Relational Analysis. Surface Review and Letters, 25501173. doi:10.1142/S0218625X25501173.

Samali, B., Dowling, D. M., & Li, J. (2008). Static and dynamic testing of adobe-mudbrick structures. Australian Journal of Structural Engineering, 8(2), 159–170. doi:10.1080/13287982.2008.11464995.

Morel, J. C., Pkla, A., & Walker, P. (2007). Compressive strength testing of compressed earth blocks. Construction and Building Materials, 21(2), 303–309. doi:10.1016/j.conbuildmat.2005.08.021.

Subramaniaprasad, C. K., Abraham, B. M., & Kunhanandan Nambiar, E. K. (2015). Influence of Embedded Waste-Plastic Fibers on the Improvement of the Tensile Strength of Stabilized Mud Masonry Blocks. Journal of Materials in Civil Engineering, 27(7), 1–7. doi:10.1061/(asce)mt.1943-5533.0001165.

Riza, F. V., Rahman, I. A., Mujahid, A., & Zaidi, A. (2010). A brief review of Compressed Stabilized Earth Brick (CSEB). CSSR 2010 - 2010 International Conference on Science and Social Research, 999–1004. doi:10.1109/CSSR.2010.5773936.

Hegde, A. (2017). Geocell reinforced foundation beds-past findings, present trends and future prospects: A state-of-the-art review. Construction and Building Materials, 154, 658–674. doi:10.1016/j.conbuildmat.2017.07.230.

Kuenzel, C., Li, L., Vandeperre, L., Boccaccini, A. R., & Cheeseman, C. R. (2014). Influence of sand on the mechanical properties of metakaolin geopolymers. Construction and Building Materials, 66, 442–446. doi:10.1016/j.conbuildmat.2014.05.058.

Cui, L., Xiang, T., Hu, B., Lv, Y., Rong, H., Liu, D., Zhang, S., Guo, M., Lv, Z., & Chen, D. (2024). Design of monolithic superhydrophobic concrete with excellent anti-corrosion and self-cleaning properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 685(January), 133345. doi:10.1016/j.colsurfa.2024.133345.

Han, B., Wang, Y., Dong, S., Zhang, L., Ding, S., Yu, X., & Ou, J. (2015). Smart concretes and structures: A review. Journal of Intelligent Material Systems and Structures, 26(11), 1303–1345. doi:10.1177/1045389X15586452.

Calkins, M. (2009). Materials for sustainable sites: a complete guide to the evaluation, selection, and use of sustainable construction materials. Choice Reviews Online, 46(070, 46-3868. doi:10.5860/choice.46-3868.

Ahmad, H., Mahboubi, A., & Noorzad, A. (2020). Scale effect study on the modulus of subgrade reaction of geogrid-reinforced soil. SN Applied Sciences, 2(3), 1–22. doi:10.1007/s42452-020-2150-4.

Zain, H., Abdullah, M. M. A. B., Hussin, K., Ariffin, N., & Bayuaji, R. (2017). Review on Various Types of Geopolymer Materials with the Environmental Impact Assessment. MATEC Web of Conferences, 97. doi:10.1051/matecconf/20179701021.

Garshasbi, S., & Santamouris, M. (2019). Using advanced thermochromic technologies in the built environment: Recent development and potential to decrease the energy consumption and fight urban overheating. Solar Energy Materials and Solar Cells, 191, 21–32. doi:10.1016/j.solmat.2018.10.023.

Omar Sore, S., Messan, A., Prud’homme, E., Escadeillas, G., & Tsobnang, F. (2018). Stabilization of compressed earth blocks (CEBs) by geopolymer binder based on local materials from Burkina Faso. Construction and Building Materials, 165, 333–345. doi:10.1016/j.conbuildmat.2018.01.051.


Full Text: PDF

DOI: 10.28991/CEJ-2025-011-04-09

Refbacks

  • There are currently no refbacks.




Copyright (c) 2025 Kandasamy A, Ramesh B, Mahmoud Al Khazaleh, Sabari K

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message