Effect of Signal Filtering on Metaheuristic-Based Structural Parameter Identification in Shear Building Models
Downloads
This study evaluates the effectiveness of three metaheuristic algorithms—Genetic Algorithm (GA), Differential Evolution (DE), and Particle Swarm Optimization (PSO)—for identifying lateral interstory stiffness and the modal damping ratio in two-dimensional shear building models. The main objective is to estimate these parameters using time-domain displacement, velocity, and acceleration data, assuming known floor masses and unknown input excitation that primarily excites translational vibration modes. Three structural configurations with 2, 3, and 5 stories are analyzed to assess the scalability and robustness of each algorithm. To assess the effect of signal filtering on the performance of the algorithms, white noise is added to the synthetic response data at six levels ranging from 0% to 5% of the root mean square (RMS) amplitude. A sixth-order Butterworth filter is applied to evaluate the effect of signal preprocessing, and results obtained with and without filtering are compared. The results show that all three algorithms achieve acceptable levels of accuracy, even under noisy conditions. Filtering consistently improves identification accuracy, especially in high-noise conditions. In the most challenging case (5% noise, 5-story model), the average identification errors were 5.042% for GA, 5.106% for DE, and 5.035% for PSO. The findings underscore the practical value of integrating signal filtering with metaheuristic optimization for robust structural system identification in noise-contaminated environments. To account for the random nature of the algorithms, all results reported correspond to the average of 10 independent runs per identification scenario to ensure reliable performance evaluation.
Downloads
[1] Wang, D., & Haldar, A. (1994). Element‐Level System Identification with Unknown Input. Journal of Engineering Mechanics, 120(1), 159–176. doi:10.1061/(asce)0733-9399(1994)120:1(159).
[2] Koh, C. G., See, L. M., & Balendra, T. (1995). Determination of storey stiffness of three-dimensional frame buildings. Engineering Structures, 17(3), 179–186. doi:10.1016/0141-0296(95)00055-C.
[3] Ling, X., & Haldar, A. (2004). Element Level System Identification with Unknown Input with Rayleigh Damping. Journal of Engineering Mechanics, 130(8), 877–885. doi:10.1061/(asce)0733-9399(2004)130:8(877).
[4] Yuen, K.-V., Au, S. K., & Beck, J. L. (2004). Two-Stage Structural Health Monitoring Approach for Phase I Benchmark Studies. Journal of Engineering Mechanics, 130(1), 16–33. doi:10.1061/(asce)0733-9399(2004)130:1(16).
[5] Katkhuda, H., Martinez, R., & Haldar, A. (2005). Health Assessment at Local Level with Unknown Input Excitation. Journal of Structural Engineering, 131(6), 956–965. doi:10.1061/(asce)0733-9445(2005)131:6(956).
[6] González-Pérez, C., & Valdés-González, J. (2011). Identification of structural damage in a vehicular bridge using artificial neural networks. Structural Health Monitoring, 10(1), 33–48. doi:10.1177/1475921710365416.
[7] Badaoui, M., Bourahla, N., & Bensaibi, M. (2019). Estimation of accidental eccentricities for multi-storey buildings using artificial neural networks. Asian Journal of Civil Engineering, 20(5), 703–711. doi:10.1007/s42107-019-00137-x.
[8] González-Pérez, C. A., & De-la-Colina, J. (2022). Determination of mass properties in floor slabs from the dynamic response using artificial neural networks. Civil Engineering Journal, 8(8). doi:10.28991/CEJ-2022-08-08-01.
[9] Houssein, E. H., Hossam Abdel Gafar, M., Fawzy, N., & Sayed, A. Y. (2025). Recent metaheuristic algorithms for solving some civil engineering optimization problems. Scientific Reports, 15(1), 7929. doi:10.1038/s41598-025-90000-8.
[10] Wang, G.S., Huang, F.K. & Lin, H.H. (2004) Application of Genetic Algorithm to Structural Dynamic Parameter Identification. 13th World Conference on Earthquake Engineering, 1-6 August , 2004, Vancouver, Canada.
[11] Casciati, S. (2008). Stiffness identification and damage localization via differential evolution algorithms. Structural Control and Health Monitoring, 15(3), 436–449. doi:10.1002/stc.236.
[12] Xue, S., Tang, H., & Zhou, J. (2009). Identification of structural systems using particle swarm optimization. Journal of Asian Architecture and Building Engineering, 8(2), 517–524. doi:10.3130/jaabe.8.517.
[13] Begambre, O., & Laier, J. E. (2009). A hybrid Particle Swarm Optimization - Simplex algorithm (PSOS) for structural damage identification. Advances in Engineering Software, 40(9), 883–891. doi:10.1016/j.advengsoft.2009.01.004.
[14] Xiang, J., & Liang, M. (2012). A two-step approach to multi-damage detection for plate structures. Engineering Fracture Mechanics, 91, 73–86. doi:10.1016/j.engfracmech.2012.04.028.
[15] Li, R., Mita, A., & Zhou, J. (2013). Symbolization-based differential evolution strategy for identification of structural parameters. Structural Control and Health Monitoring, 20(10), 1255–1270. doi:10.1002/stc.1530.
[16] Ravanfar, S. A., Abdul Razak, H., Ismail, Z., & Hakim, S. J. S. (2016). A Hybrid Wavelet Based–Approach and Genetic Algorithm to Detect Damage in Beam-Like Structures without Baseline Data. Experimental Mechanics, 56(8), 1411–1426. doi:10.1007/s11340-016-0181-y.
[17] Ghannadi, P., & Kourehli, S. S. (2019). Structural damage detection based on MAC flexibility and frequency using moth-flame algorithm. Structural Engineering and Mechanics, 70(6), 649–659. doi:10.12989/sem.2019.70.6.649.
[18] Ferreira-Gomes, G., & Alves-de-Almeida, F. (2020). Tuning metaheuristic algorithms using mixture design: Application of sunflower optimization for structural damage identification. Advances in Engineering Software, 149(2020), 102877. doi:10.1016/j.advengsoft.2020.102877.
[19] Miao, B., Wang, M., Yang, S., Luo, Y., & Yang, C. (2020). An Optimized Damage Identification Method of Beam Using Wavelet and Neural Network. Engineering, 12(10), 748–765. doi:10.4236/eng.2020.1210053.
[20] Guo, J., Guan, D., & Zhao, J. (2020). Structural Damage Identification Based on the Wavelet Transform and Improved Particle Swarm Optimization Algorithm. Advances in Civil Engineering, 2020(1), 1–19. doi:10.1155/2020/8869810.
[21] Minh, H. Le, Khatir, S., Abdel Wahab, M., & Cuong-Le, T. (2021). An Enhancing Particle Swarm Optimization Algorithm (EHVPSO) for damage identification in 3D transmission tower. Engineering Structures, 242(September), 112412. doi:10.1016/j.engstruct.2021.112412.
[22] Minh, H. Le, Sang-To, T., Khatir, S., Abdel Wahab, M., & Cuong-Le, T. (2023). Damage identification in high-rise concrete structures using a bio-inspired meta-heuristic optimization algorithm. Advances in Engineering Software, 176(2023), 103399. doi:10.1016/j.advengsoft.2022.103399.
[23] Zar, A., Hussain, Z., Akbar, M., Rabczuk, T., Lin, Z., Li, S., & Ahmed, B. (2024). Towards vibration-based damage detection of civil engineering structures: overview, challenges, and future prospects. International Journal of Mechanics and Materials in Design, 20(3), 591–662. doi:10.1007/s10999-023-09692-3.
[24] Li, Y. F., Minh, H. Le, Cao, M. Sen, Qian, X., & Abdel Wahab, M. (2024). An integrated surrogate model-driven and improved termite life cycle optimizer for damage identification in dams. Mechanical Systems and Signal Processing, 208(2024), 110986. doi:10.1016/j.ymssp.2023.110986.
[25] Hernández-González, I. A., & García-Macías, E. (2024). Towards a comprehensive damage identification of structures through populations of competing models. Engineering with Computers, 40(2024), 3157–3174. doi:10.1007/s00366-024-01972-6.
[26] Alemu, Y. L., Lahmer, T., & Walther, C. (2024). Damage Detection with Data-Driven Machine Learning Models on an Experimental Structure. Eng, 5(2), 629–656. doi:10.3390/eng5020036.
[27] Farhadi, M., Ghiasi, R., & Torkzadeh, P. (2024). Damage detection of truss structures using meta-heuristic algorithms and optimized group method of data handling surrogate model. Structures, 65(2024), 106736. doi:10.1016/j.istruc.2024.106736.
[28] Davis L. (1991). Hybridization and numerical representation. The Handbook of Genetic Algorithms Edited by Davis L., 61–71, Van Nostrand Reinhold, New York, United States.
[29] Janikow, C. Z. & Michalewicz, Z. (1991). An experimental comparison of binary and floating point representations in genetic algorithms. Proceedings of the 4th International Conference on Genetic Algorithms, 13-16 July, 1991, San Diego, United Sates.
[30] Wright, A. H. (1991). Genetic Algorithms for Real Parameter Optimization. Foundations of Genetic Algorithms, 1, 205–218. doi:10.1016/b978-0-08-050684-5.50016-1.
[31] Eiben, A. E., & Smith, J. E. (2015). Introduction to Evolutionary Computing. Natural Computing Series, Springer, Berlin, Germany. doi:10.1007/978-3-662-44874-8.
[32] Deb, K., & Agrawal, R. B. (1995). Simulated binary crossover for continuous search space. Complex systems, 9(2), 115-148.
[33] Schaffer, J. D., Caruana, R., Eshelman, L. J., & Das, R. (1989). A study of control parameters affecting online performance of genetic algorithms for function optimization. Proceedings of the 3rd international conference on genetic algorithms, 4-7 June, 1989, Fairfax, United States.
[34] Deb, K., & Agrawal, S. (1999). A Niched-Penalty Approach for Constraint Handling in Genetic Algorithms. Artificial Neural Nets and Genetic Algorithms. Springer, Vienna, Austria. doi:10.1007/978-3-7091-6384-9_40.
[35] Deb, K. (2001). Multi-Objective Optimization Using Evolutionary Algorithms. John Wiley & Sons, Chichester, United Kingdom.
[36] Deb, K., & Deb, ayan. (2014). Analysing mutation schemes for real-parameter genetic algorithms. International Journal of Artificial Intelligence and Soft Computing, 4(1), 1. doi:10.1504/ijaisc.2014.059280.
[37] Wirsansky, E. (2020). Hands-On Genetic Algorithms with Python: Applying genetic algorithms to solve real-world deep learning and artificial intelligence problems. Packt Publishing, Birmingham, United Kingdom.
[38] Wang, Y., Cai, Z., & Zhang, Q. (2011). Differential evolution with composite trial vector generation strategies and control parameters. IEEE Transactions on Evolutionary Computation, 15(1), 55–66. doi:10.1109/TEVC.2010.2087271.
[39] Ho-Huu, V., Nguyen-Thoi, T., Vo-Duy, T., & Nguyen-Trang, T. (2016). An adaptive elitist differential evolution for optimization of truss structures with discrete design variables. Computers and Structures, 165(2016), 59–75. doi:10.1016/j.compstruc.2015.11.014.
[40] Das, S., & Suganthan, P. N. (2011). Differential evolution: A survey of the state-of-the-art. IEEE Transactions on Evolutionary Computation, 15(1), 4–31. doi:10.1109/TEVC.2010.2059031.
[41] Storn, R., & Price, K. (1997). Differential Evolution - A Simple and Efficient Heuristic for Global Optimization over Continuous Spaces. Journal of Global Optimization, 11(4), 341–359. doi:10.1023/A:1008202821328.
[42] Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. Proceedings of ICNN’95 - International Conference on Neural Networks, 4, 1942–1948. doi:10.1109/icnn.1995.488968.
[43] Eberhart, R.C., & Shi, Y. (1998). Comparison between genetic algorithms and particle swarm optimization. Evolutionary Programming VII. EP 1998. Lecture Notes in Computer Science, 1447, Springer, Berlin, Germany. doi:10.1007/BFb0040812.
[44] Carlisle, A., & Dozier, G. (2001). An off-the-shelf PSO. Proceedings of the Workshop on Particle Swarm Optimization. Purdue school of engineering and technology, Indianapolis, Indiana.
[45] Shi, Y., & Eberhart, R. C. (1998). Parameter selection in particle swarm optimization. Evolutionary Programming VII. EP 1998. Lecture Notes in Computer Science, 1447. Springer, Berlin, Germany. doi:10.1007/BFb0040810.
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.