Impact of Unhydrated Lime on the Geotechnical Properties of Clayey Soil

Zahraa H. Sarhan, Hussein H. Karim, Zeena W. Samueel

Abstract


This study investigates the impact of quicklime (CaO) on improving the geotechnical properties of clayey soil. Quicklime was mixed with soil in varying proportions (2%, 5%, and 8% by dry weight) to assess its effects. The results showed that increasing lime content reduced specific gravity, while the optimum moisture content (OMC) and plasticity index increased. Additionally, the liquid limit, plastic limit, and plasticity index decreased, and there were improvements in compressive strength, friction angle, and unconfined compressive strength. Compression parameters such as the compression index (Cc), rebound index (Cr), volume change coefficient (mv), and compression modulus (av) decreased with increasing lime content. The most significant improvement was observed at 2% lime, with further increases to 5% and 8% resulting in less improvement. X-ray diffraction (XRD) and scanning electron microscopy (SEM) analyses were conducted to explore the mineralogical and structural changes in the soil, demonstrating the chemical and physical interactions between lime and soil. This research provides valuable insights into the role of quicklime in modifying clayey soil properties, with implications for improving geotechnical performance in civil engineering applications, particularly in road and infrastructure projects.

 

Doi: 10.28991/CEJ-2025-011-05-012

Full Text: PDF


Keywords


Clay; Quick Lime (LQ); Compressive Strength; Scanning Electron Microscopy (SEM); X-Ray Diffraction (XRD).

References


Aouf, G., Alhakim, G., & Jaber, L. (2024). Utilizing Recycled Rubber and Municipal Waste Incineration Fly Ash in Cement-Stabilized Clayey Soils. Civil Engineering Journal, 10(11), 3721-3737. doi:10.28991/CEJ-2024-010-11-017.

Karim, H., & Al-Soudany, K. (2018). Improving geotechnical properties of clayey soil using polymer material. MATEC Web of Conferences, 162, 1002. doi:10.1051/matecconf/201816201002.

Karim, H. H., Samueel, Z. W., & Ahmed, S. F. (2015). Geotechnical properties of soft clay soil stabilized by reed ashes. 2nd international conference on buildings, construction and environmental engineering, 17-18 October, 2015, Beirut, Lebanon.

Asgari, M. R., Baghebanzadeh Dezfuli, A., & Bayat, M. (2015). Experimental study on stabilization of a low plasticity clayey soil with cement/lime. Arabian Journal of Geosciences, 8(3), 1439–1452. doi:10.1007/s12517-013-1173-1.

Dhar, S., & Hussain, M. (2019). The strength and microstructural behavior of lime stabilized subgrade soil in road construction. International Journal of Geotechnical Engineering, 15(4), 471–483. doi:10.1080/19386362.2019.1598623.

Manzoor, S. O., & Yousuf, A. (2020). Stabilisation of soils with lime: a review. Journal of Materials and Environmental Science, 11(9), 1538–1551. doi:10.26872/jmes.2020.11.9.1538.

Keybondori, S., & Abdi, E. (2021). Lime stabilization to improve clay-textured forest soil road subgrades. International Journal of Forest Engineering, 32(2), 112–118. doi:10.1080/14942119.2021.1876476.

Hasan, M. F. R., Utama, I. Z., Razzak, A. F. A., Salimah, A., & Agung, P. A. M. (2023). Clayshale stabilization using active natural lime to increase the shear strength of soil. IOP Conference Series: Earth and Environmental Science, 1173(1), 12025. doi:10.1088/1755-1315/1173/1/012025.

Aqel, R., Attom, M., El-Emam, M., & Yamin, M. (2024). Piping Stabilization of Clay Soil Using Lime. Geosciences (Switzerland), 14(5), 122. doi:10.3390/geosciences14050122.

Baqir, H., Al-Adili, A., & Shareef, A. (2018). Study The Effect of Traditional Iraqi Stabilizers (Cement and Lime) on Some Properties of Iraqi Clay Soils. Engineering and Technology Journal, 36(3A), 248–255. doi:10.30684/etj.36.3a.2.

Shareef, A. H. (2016). Investigation of Cement with Lime as Stabilized Materials for Soft Soils. Master Thesis, University of Technology, Baghdad, Iraq.

Khattab, S. A., Al-Kiki, I. M., & Al-Zubaydi, A. H. (2011). Effect of fibers on some engineering properties of cement and lime stabilized soils. Engineering and Technology Journal, 29(5), 886-905.

Sambre, T., Endait, M., & Patil, S. (2024). Sustainable soil stabilization of expansive soil subgrades through lime-fly ash admixture. Discover Civil Engineering, 1(1), 65. doi:10.1007/s44290-024-00063-1.

Ahmed, A., El-Emam, M., Ahmad, N., & Attom, M. (2024). Stabilization of Pavement Subgrade Clay Soil Using Sugarcane Ash and Lime. Geosciences (Switzerland), 14(6), 151. doi:10.3390/geosciences14060151.

Majid, B. A., Gaus, A., Hasim, Y., Rauf, I., & Utama, K. A. (2025). Eco-Friendly Innovation in Soft Soil Stabilization: Combining Fine Pumice, Aluminium Hydroxide, and Lime to Enhance Road Bearing Capacity. International Journal of Innovative Research in Engineering and Management, 12(1), 1–6. doi:10.55524/ijirem.2025.12.1.1.

Li, S., Liu, S., Zhang, T., Wang, Z., & Zhao, W. (2025). Experimental study on the durability and microstructural characteristics of lime-stabilized silty clay in seasonally frozen region. Construction and Building Materials, 463, 140158. doi:10.1016/j.conbuildmat.2025.140158.

Domphoeun, R., Eisazadeh, A., & Nishimura, S. (2024). Strength Properties of Laterite Soil Stabilized with Rice Husk Ash and Lime as Road Material. Transportation Infrastructure Geotechnology, 12(1), 1-17. doi:10.1007/s40515-024-00495-3.

Al-kiki, I. M., Al-atalla, M. a, & Al-zubaydi, A. H. (2011). Long term strength and durability of clayey soil stabilized with lime. Engineering and Technique Journal, 29(4), 725–735.

ASTM D4318-17e1. (2018). Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils. ASTM International, Pennsylvania, United States. doi:10.1520/D4318-17E01.

ASTM D854-23. (2023). Standard Test Methods for Specific Gravity of Soil Solids by the Water Displacement Method. ASTM International, Pennsylvania, United States. doi:10.1520/D0854-23.

ASTM D422-63(2007). (2014). Standard Test Method for Particle-Size Analysis of Soils. ASTM International, Pennsylvania, United States. doi:10.1520/D0422-63R07.

ASTM D2166-06. (2010). Standard Test Method for Unconfined Compressive Strength of Cohesive Soil. ASTM International, Pennsylvania, United States. doi:10.1520/D2166-06.

ASTM D3080-04. (2012). Standard Test Method for Direct Shear Test of Soils Under Consolidated Drained Conditions. ASTM International. ASTM International, Pennsylvania, United States. doi:10.1520/D3080-04.

ASTM D2435-04. (2011). Standard Test Methods for One-Dimensional Consolidation Properties of Soils Using Incremental Loading. ASTM International, Pennsylvania, United States. doi:10.1520/D2435-04.

Sharma, N. K., Swain, S. K., & Sahoo, U. C. (2012). Stabilization of a Clayey Soil with Fly Ash and Lime: A Micro Level Investigation. Geotechnical and Geological Engineering, 30(5), 1197–1205. doi:10.1007/s10706-012-9532-3.

Alrubaye, A. J., Hasan, M., & Fattah, M. Y. (2016). Engineering properties of clayey soil stabilized with lime. ARPN Journal of Engineering and Applied Sciences, 11(4), 2434-2441.

Baquir, H. H. (1990). Stabilization of Fao Clay. Master Thesis, University of Technology, Baghdad, Iraq.

Das, B. M., & Sobhan, K. (1985). Geotechnical engineering. PWS Engineering, Boston, United States.

Goldstein, J. I., Newbury, D. E., Michael, J. R., Ritchie, N. W. M., Scott, J. H. J., & Joy, D. C. (2018). Scanning Electron Microscopy and X-Ray Microanalysis. Springer, New York, United States. doi:10.1007/978-1-4939-6676-9.

Al-Bared, M. M., & Marto, A. (2017). A review on the geotechnical and engineering characteristics of marine clay and the modern methods of improvements. Malaysian Journal of Fundamental and Applied Sciences, 13(4), 825-831.

Al-Bared, M. A. M., Harahap, I. S. H., Marto, A., Abad, S. V. A. N. K., & Ali, M. O. A. (2019). Undrained shear strength and microstructural characterization of treated soft soil with recycled materials. Geomechanics and Engineering, 18(4), 427–437. doi:10.12989/gae.2019.18.4.427.

Chipera, S. J., & Bish, D. L. (2013). Fitting Full X-Ray Diffraction Patterns for Quantitative Analysis: A Method for Readily Quantifying Crystalline and Disordered Phases. Advances in Materials Physics and Chemistry, 3(1), 47–53. doi:10.4236/ampc.2013.31a007.

Mumme, W. G., Tsambourakis, G., & Cranswick, L. (1996). Improved petrological modal analyses from X-ray and neutron powder diffraction data by use of the Rietveld method. Part III. Selected massive sulphide ores. Neues Jahrbuch Fur Mineralogie, Abhandlungen, 170(3), 231–255. doi:10.2110/jsr.66.132.

Środoń, J. (2013). Identification and Quantitative Analysis of Clay Minerals. Handbook of Clay Science, 25–49, Elsevier, Amsterdam, Netherlands. doi:10.1016/b978-0-08-098259-5.00004-4.


Full Text: PDF

DOI: 10.28991/CEJ-2025-011-05-012

Refbacks

  • There are currently no refbacks.




Copyright (c) 2025 Zahraa Hameed Sarhan

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message