A Novel Approach to Selecting Rational Supports for Underground Mining Workings

Talgat Almenov, Raissa Zhanakova, Madiyar Sarybayev, Din-Mukhammed Shabaz

Abstract


The goal of this study is to examine the stress-strain state and stability of rock massifs to select a rational type of support for underground workings in challenging mining and geological conditions. The primary aims include increasing the speed of mine workings, reducing capital expenditure, and enhancing safety. Established and novel theoretical methods for mining, geomechanics, and rock massif management were employed. These methods involve analyzing factors affecting the mine working speed, studying the physical and mechanical properties of rocks, developing stratigraphic profiles, and assessing the stress-strain state and stability using Bieniawski’s Rock Mass Rating (RMR), Barton’s Q-rating, and construction norms and rules. Numerical modeling with the Rocscience RS2/RS3 software was utilized to identify failure-prone areas and determine rational support types and parameters. This study provides comprehensive insights into the stress-strain state of the massif, identifying high-risk zones, and recommending suitable support types. The findings contribute to accelerating the progress of underground work, enhancing safety, and reducing construction costs. The developed support systems for challenging mining and geological conditions were designed to increase the speed, safety, and profitability of underground workings. Additionally, this research emphasizes the significance of selecting appropriate support systems to ensure the longevity and stability of underground structures, thereby optimizing operational efficiency and cost-effectiveness.

 

Doi: 10.28991/CEJ-2025-011-03-022

Full Text: PDF


Keywords


Underground Mine Workings; Conducting and Supporting Mine Workings; Stress-Strain State; Rock Massif; Massif Stability Category; Support Design.

References


Makhanov B. (2022). Sustainability Report “Golden Prospects for a Sustainable Future 2022” Joint Stock Company "AK Altynalmas", p. 114. Available online: https://www.altynalmas.kz/inform/reports (accessed on February 2025).

Begalinov, A., Almenov, T., Zhanakova, R., & Bektur, B. (2020). Analysis of the stress deformed state of rocks around the haulage roadway of the beskempir field (Kazakhstan). Mining of Mineral Deposits, 14(3), 28–36. doi:10.33271/mining14.03.028.

Bakhramov, B., Begalinov, A., & Almenov et al. (2015). Method of development of steeply falling vein deposits. Patent No. 30460 for Invention of the Republic of Kazakhstan, Astana, Kazakhstan.

Begalinov, A., Serdaliev, E., Almenov, T., Iskakov, E., Amanzholov, D., & Bahramov, B. (2012). Improvement of mining of gold-bearing ores of Akbakai ore field. Mining Journal of Kazakhstan, 12, 4–8.

AK Altynalmas JSC (ALMS). (2020). Stripping and development of reserves of Beskempir and Aksakal deposits. Kazakhstan Stock Exchange JSC, Almaty, Republic of Kazakhstan.

Korchak, S. A., Abaturova, I. V., Savintsev, I. A., & Storozhenko, L. A. (2021). Methodology for Studying the Fracturing of Rock Massifs at Different Stages of the study of Mineral Deposits. Engineering and Mining Geophysics 2021, 1–11. doi:10.3997/2214-4609.202152066.

Makhanov B. (2023). Sustainability Report “Golden Prospects for a Sustainable Future 2023” Joint Stock Company "AK Altynalmas", p. 114. Available online: https://www.altynalmas.kz/inform/reports (accessed on February 2025).

Matayev, A., Abdiev, A., Kydrashov, A., Musin, A., Khvatina, N., & Kaumetova, D. (2021). Research into technology of fastening the mine workings in the conditions of unstable masses. Mining of Mineral Deposits, 15(3), 78–86. doi:10.33271/MINING15.03.078.

Yu, M., Zuo, J., Sun, Y., Mi, C., & Li, Z. (2022). Investigation on fracture models and ground pressure distribution of thick hard rock strata including weak interlayer. International Journal of Mining Science and Technology, 32(1), 137–153. doi:10.1016/j.ijmst.2021.10.009.

Elrawy, W. R., Abdelhaffez, G. S., & Saleem, H. A. (2020). Stability assessment of underground openings using different rock support systems. Mining Geology and Petroleum Journal, 35(1), 49–64. doi:10.17794/rgn.2020.1.5.

Feng, G., & Wang, P. (2020). Simulation of recovery of upper remnant coal pillar while mining the ultra-close lower panel using longwall top coal caving. International Journal of Mining Science and Technology, 30(1), 55–61. doi:10.1016/j.ijmst.2019.12.017.

Abramkin, N. I., Mansurov, P. A., & Kuzina, A. V. (2024). Rationale for underground coal combustion. AIP Conference Proceedings, 3183, 080001. doi:10.1063/5.0244068.

Ligotsky, D. N., & Argimbaeva, K. V. (2023). Effect of grain size distribution of tailings during the formation of technogenic deposit on the fragmentation index. Sustainable Development of Mountain Territories, 15(2), 275–282. doi:10.21177/1998-4502-2023-15-2-275-282.

Waqar, M. F., Guo, S., & Qi, S. (2023). A Comprehensive Review of Mechanisms, Predictive Techniques, and Control Strategies of Rockburst. Applied Sciences (Switzerland), 13(6), 3950. doi:10.3390/app13063950.

Yu, X., Lv, S., Luo, Y., Liu, P., Fu, H., & Zhou, Y. (2024). Research on Support Technology for Unstable Roof Roadway Under Abandoned Roadways in Ultra-Thick Coal Seam. Processes, 12(12), 2886. doi:10.3390/pr12122886.

Ren, H., Dai, L., Pan, Y., Wang, A., & Xiao, Y. (2025). Instability mechanism of composite structure involved coal pillar and key strata induced by multi-face mining. Geomatics, Natural Hazards and Risk, 16(1), 2453085. doi:10.1080/19475705.2025.2453085.

Zhang, L. (2004). Drilled shafts in rock: analysis and design. CRC Press, London, United Kingdom. doi:10.1201/9780203024423.

Yussupov, K., Aben, E., Akhmetkanov, D., Aben, K., & Yussupova, S. (2023). Investigation of the solid oxidizer effect on the metal geotechnology efficiency. Mining of Mineral Deposits, 17(4), 12–17. doi:10.33271/mining17.04.012.

Petlovanyi, M., Sai, K., Khalymendyk, O., Borysovska, O., & Sherstiuk, Y. (2023). Analytical research of the parameters and characteristics of new “quarry cavities – backfill material” systems: Case study of Ukraine. Mining of Mineral Deposits, 17(3), 126–139. doi:10.33271/mining17.03.126.

Elbialy, S., Elfarnsawy, M., Salah, M., Abdel-Aziz, A., & Ibrahim, W. (2025). An Experimental Study on Steel Fiber Effects in High-Strength Concrete Slabs. Civil Engineering Journal (Iran), 11(1), 215–229. doi:10.28991/CEJ-2025-011-01-013.

Akpanbayeva, A., & Issabek, T. (2023). Assessing a natural field of rock mass stress by means of in-situ measurements within Vostochnaya Sary-Oba deposit in Kazakhstan. Mining of Mineral Deposits, 17(3), 56–66. doi:10.33271/mining17.03.056.

Izotova, V., Pankratova, K., & Pospehov, G. (2019). Analysis of the Vibration Impact on the Soils of Vasilyevsky Island of St. Petersburg. Akustika, 32, 332–334. doi:10.36336/akustika201932332.

Akishev, K. M., Aryngazin, K. S., Tleulessov, K., Bulyga, L. L., & Stanevich, V. T. (2024). The Use of Simulation Modeling in Calculating the Productivity of the Technological System for the Production of Building Products with Fillers from Man-Made Waste. News of the National Academy of Sciences of the Republic of Kazakhstan, Series of Geology and Technical Sciences, 2024(4), 22–32. doi:10.32014/2024.2518-170X.422.

Al-Fasih, M. Y. M., Edris, W. F., Elbialy, S., Marsono, A. K., & Al Sayed, A. A. K. A. (2024). Lateral Displacement Behavior of IBS Precast Concrete Elements Reinforced with Dual System. Civil Engineering Journal (Iran), 10(1), 317–335. doi:10.28991/CEJ-2024-010-01-020.

Mnzool, M., Al-Mukhtar, A., Majeed, A. J., Arafat, A., & Gomaa, E. (2024). Simulation and performance characteristics of rock with borehole using Visual Finite Element Analysis. Mining of Mineral Deposits, 18(3), 33–41. doi:10.33271/mining18.03.033.

Demin, V., Khalikova, E., Rabatuly, M., Amanzholov, Z., Zhumabekova, A., Syzdykbaeva, D., Bakhmagambetova, G., & Yelzhanov, Y. (2024). Research into mine working fastening technology in the zones of increased rock pressure behind the longwall face to ensure safe mining operations. Mining of Mineral Deposits, 18(1), 27–36. doi:10.33271/mining18.01.027.

Imashev, A., Suimbayeva, A., Zhunusbekova, G., Adoko, A. C., & Issakov, B. (2024). Assessing stability of mine workings driven in stratified rock mass. Mining of Mineral Deposits, 18(1), 82–88. doi:10.33271/mining18.01.082.

Cheremisina, O. V., Vasiliev, R. E., Netrusov, A. O., & Ter-Oganesyants, A. K. (2024). Hot Curing and Lime Boiling of High-Arsenic Copper Concentrate Pressure Oxidation Product and Their Effect on Precious Metals Recovery During Subsequent Cyanidation. Tsvetnye Metally, 2024(2), 19–26. doi:10.17580/tsm.2024.02.02.

Burtan, Z., & Chlebowski, D. (2022). The Effect of Mining Remnants on Elastic Strain Energy Arising in the Tremor-Inducing Layer. Energies, 15(16), 6031. doi:10.3390/en15166031.

SN RK 2.03-04-2020. (2020). Construction norms and rules. Underground Mine Workings, Republic of Kazakhstan, Astana, Kazakhstan.

Rocscience Inc. (2021). User Manual for modelling and analysis of slopes, surface and underground mine workings, groundwater filtration, consolidation. Rocscience Inc., Toronto, Canada.

Rocscience RS2 11.0. (2020). RS2 Version 11.0 - Finite Element Analysis for Excavations and Slopes. Rocscience Inc., Toronto, Canada.

Van Kien, D., Anh, D. N., & Thai, D. N. (2022). Numerical Simulation of the Stability of Rock Mass around Large Underground Cavern. Civil Engineering Journal (Iran), 8(1), 81–91. doi:10.28991/CEJ-2022-08-01-06.

Matayev, A. K., Lozynskyi, V. H., Musin, A., Abdrashev, R. M., Kuantay, A. S., & Kuandykova, A. N. (2021). Substantiating the optimal type of mine working fastening based on mathematical modeling of the stress condition of underground structures. Scientific Bulletin of the National Mining University, 2021(3), 57–63. doi:10.33271/nvngu/2021-3/057.


Full Text: PDF

DOI: 10.28991/CEJ-2025-011-03-022

Refbacks

  • There are currently no refbacks.




Copyright (c) 2025 Talgat Almenov, Raissa Zhanakova, Madiyar Sarybayev, Din-Mukhammed Shabaz

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message