Enhancing Operating Rules for Water Pumping Stations Under Transient Flow Conditions by Using Surge Tanks
Downloads
With an emphasis on Pump Station 1 (PS1) of the Basra Water Project (Open Canal) in Iraq, this study examines the essential hydraulic parameters of water pumping stations under transient flow situations. The study assesses the effects of routine operations, unexpected shutdowns, and surge tank installations on pressure stability and system flexibility using hydraulic modeling with HAMMER V8i. The findings show notable changes in pressure during brief occurrences. An abrupt shutdown without surge tank protection resulted in minimum pressures of 12.5 m in pipes L1 and L2, exposing them to hydraulic transient effects. The maximum pipe pressure under normal circumstances was 17.5 m (L3). Because of its exposure to low-pressure occurrences, the analysis identifies L1 as the most in-danger pipeline. It has been demonstrated that traditional operating procedures, which frequently ignore transient dynamics, increase the probability of service disruption and lead to inefficiency. In contrast, adding surge tanks reduces pressure variability and lessens the impacts of the water hammer, significantly increasing pressure stability, especially when three tanks are used. The results highlight how adaptable operational procedures are essential for employing and managing water delivery systems. According to the study findings, adding surge tanks improves durability and performance while lowering the risks of transient flow occurrences. This offers a guide for restructuring water pumping station operations.
Downloads
[1] Martin, A., Delgado-Aguiñaga, J. A., & Puig, V. (2022). Control of transients in drinking water networks. Control Engineering Practice, 119, 104986. doi:10.1016/j.conengprac.2021.104986.
[2] Arefi, M. H., Ghaeini-Hessaroeyeh, M., & Memarzadeh, R. (2021). Numerical modeling of water hammer in long water transmission pipeline. Applied Water Science, 11(8). doi:10.1007/s13201-021-01471-9.
[3] Zhao, Y., Zhang, P., Pu, Y., Lei, H., & Zheng, X. (2023). Unit Operation Combination and Flow Distribution Scheme of Water Pump Station System Based on Genetic Algorithm. Applied Sciences (Switzerland), 13(21), 11869. doi:10.3390/app132111869.
[4] Chen, W., Tao, T., Zhou, A., Zhang, L., Liao, L., Wu, X., Yang, K., Li, C., Zhang, T. C., & Li, Z. (2021). Genetic optimization toward operation of water intake-supply pump stations system. Journal of Cleaner Production, 279, 123573. doi:10.1016/j.jclepro.2020.123573.
[5] Bagirov, A. M., Barton, A. F., Mala-Jetmarova, H., Al Nuaimat, A., Ahmed, S. T., Sultanova, N., & Yearwood, J. (2013). An algorithm for minimization of pumping costs in water distribution systems using a novel approach to pump scheduling. Mathematical and Computer Modelling, 57(3–4), 873–886. doi:10.1016/j.mcm.2012.09.015.
[6] Picazo, M. Á. P., & Tekinerdogan, B. (2024). Urban water distribution networks: Challenges and solution directions. Management and Engineering of Critical Infrastructures, 245–264, Academic Press, Cambridge, United States. doi:10.1016/b978-0-323-99330-2.00005-2.
[7] Bonet, E., & Yubero, M. T. (2024). Optimal Pumping Flow Algorithm to Improve Pumping Station Operations in Irrigation Systems. Agriculture (Switzerland), 14(3), 463. doi:10.3390/agriculture14030463.
[8] El-Hazek, A. N., Ahmed, M. F., & Neveen Abdel-Mageed Badawy. (2020). Transient flow simulation, analysis and protection of pipeline systems. Journal of Water and Land Development, 47(1), 47–60. doi:10.24425/jwld.2020.135031.
[9] Kim, S. (2024). Optimizing pipeline systems with surge tanks using a dimensionless transient model. Journal of Hydroinformatics, 26(6), 1385–1395. doi:10.2166/hydro.2024.007.
[10] Gutierrez-Bahamondes, J. H., Valdivia-Muñoz, B., Mora-Melia, D., & Iglesias-Rey, P. L. (2024). Reduction of the search space for the optimization problem of the design of the pumping station through the automatic identification of infeasible flow distributions. Proceedings, 14823. doi:10.4995/wdsa-ccwi2022.2022.14823.
[11] Gutiérrez-Bahamondes, J. H., Mora-Melia, D., Valdivia-Muñoz, B., Silva-Aravena, F., & Iglesias-Rey, P. L. (2023). Infeasibility Maps: Application to the Optimization of the Design of Pumping Stations in Water Distribution Networks. Mathematics, 11(7), 1582. doi:10.3390/math11071582.
[12] Riasi, A., Raisee, M., & Nourbakhsh, A. (2010). Simulation of transient flow in hydroelectric power plants using unsteady friction. Journal of Mechanical Engineering, 56(6), 377-384.
[13] Huang, W., Ma, J., Guo, X., Li, H., Li, J., & Wang, G. (2021). Stability criterion for mass oscillation in the surge tank of a hydropower station considering velocity head and throttle loss. Energies, 14(17), 5247. doi:10.3390/en14175247.
[14] Liu, G., Deng, Y., Liu, Z., Zhang, Y., Ma, C., Chen, D., & Zhao, Z. (2024). Potential risks in balancing flexibility and investment of pumped storage plants: Hydraulic disturbances during transient processes in parallel operation of fixed-speed and variable-speed units sharing a diversion tunnel. Journal of Energy Storage, 88(111483). doi:10.1016/j.est.2024.111483.
[15] Roshangar, K., & Pour Heidar, P. (2014). Evaluation Of Reductive Option of Water Hammer Phenomenon for a Water Conveyance System, A Case Study of Shahid Shirdom Residential District-Tehran. Water and Wastewater, 25(6 (94)), 67-76. (In persian).
[16] Bello, O., Abu-Mahfouz, A. M., Hamam, Y., Page, P. R., Adedeji, K. B., & Piller, O. (2019). Solving management problems in water distribution networks: A survey of approaches and mathematical models. Water (Switzerland), 11(3), 562. doi:10.3390/w11030562.
[17] Matijašević, T., Antić, T., & Capuder, T. (2022). A systematic review of machine learning applications in the operation of smart distribution systems. Energy Reports, 8, 12379–12407. doi:10.1016/j.egyr.2022.09.068.
[18] Sattar, A. M. A., Ghazal, A. N., Elhakeem, M., Elansary, A. S., & Gharabaghi, B. (2023). Application of Machine Learning Coupled with Stochastic Numerical Analyses for Sizing Hybrid Surge Vessels on Low-Head Pumping Mains. Water (Switzerland), 15(19), 3525. doi:10.3390/w15193525.
[19] Saboe, D., Ghasemi, H., Gao, M. M., Samardzic, M., Hristovski, K. D., Boscovic, D., Burge, S. R., Burge, R. G., & Hoffman, D. A. (2021). Real-time monitoring and prediction of water quality parameters and algae concentrations using microbial potentiometric sensor signals and machine learning tools. Science of the Total Environment, 764. doi:10.1016/j.scitotenv.2020.142876.
[20] Skulovich, O., Perelman, L., & Ostfeld, A. (2014). Modeling and optimizing hydraulic transients in water distribution systems. Procedia Engineering, 70, 1558–1565. doi:10.1016/j.proeng.2014.02.172.
[21] Pérez-Sánchez, M., López-Jiménez, P. A., & Ramos, H. M. (2018). PATs operating in water networks under unsteady flow conditions: Control valve manoeuvre and overspeed effect. Water (Switzerland), 10(4), 529. doi:10.3390/w10040529.
[22] Rossi, G., & Peres, D. J. (2023). Climatic and Other Global Changes as Current Challenges in Improving Water Systems Management: Lessons from the Case of Italy. Water Resources Management, 37(6–7), 2387–2402. doi:10.1007/s11269-023-03424-0.
[23] Karney, B. W., & McInnis, D. (1990). Transient analysis of water distribution systems. Journal / American Water Works Association, 82(7), 62–70. doi:10.1002/j.1551-8833.1990.tb06992.x.
[24] Mason, M. (2022). Infrastructure under pressure: Water management and state-making in southern Iraq. Geoforum, 132, 52–61. doi:10.1016/j.geoforum.2022.04.006.
[25] Abdullah, M., Al-Ansari, N., & Laue, J. (2019). Water Resources Projects in Iraq, Irrigation. Journal of Earth Sciences and Geotechnical Engineering, 9(4), 249-274.
[26] Jia, M., Zhang, J., & Xu, Y. (2020). Optimization Design of Industrial Water Supply Pump Station Considering the Influence of Atmospheric Temperature on Operation Cost. IEEE Access, 8, 161702–161712. doi:10.1109/ACCESS.2020.3021304.
[27] Chaudhry, M. H. (2014). Applied Hydraulic Transients. Springer, New York, United States. doi:10.1007/978-1-4614-8538-4.
[28] Karami, M., Kabiri-Samani, A., Nazari-Sharabian, M., & Karakouzian, M. (2019). Investigating the effects of transient flow in concrete-lined pressure tunnels, and developing a new analytical formula for pressure wave velocity. Tunnelling and Underground Space Technology, 91, 102992. doi:10.1016/j.tust.2019.102992.
[29] David, C., Chepkonga, D., Kulei, W., & Owuor, C. (2024). Mathematical Modelling of Fluid Flow in Open Circular Channels in Sewerage Systems. Journal of Advances in Applied Mathematics and Mechanics, 11(3), 40-52. doi:10.22541/essoar.171561457.75982212/v.
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.