Effects of H₂SO₄, HCl, and MgSO₄ Attack on Porcelain-Based Geopolymer Concrete
Downloads
This study examined the durability of porcelain-based geopolymer concrete when exposed to strong acids, chlorides, and sulfates. Specimens prepared with a 14M NaOH solution and initially cured at 105°C for 24 hours were submerged in acidic and alkaline solutions for varying durations—3, 7, 14, 21, 28, 60, and 90 days. Compressive and splitting tensile strength tests were conducted to assess material performance. The results showed that immersion in H₂SO₄, HCl, and MgSO₄ solutions led to weight loss and reductions in both compressive and splitting tensile strengths. Strength deterioration was more pronounced in the early stages, with a peak weight loss rate of 15.32 g/day. After 90 days in 20% H₂SO₄, 20% HCl, and 20% MgSO₄ solutions, the residual compressive strengths were measured at 2.80, 14.19, and 3.29 N/mm², respectively, while splitting tensile strengths were recorded at 0.40, 1.21, and 0.51 N/mm². The ratio of splitting tensile strength to compressive strength (fsp/f’c) was influenced by molar concentration and immersion duration. Experimental findings revealed that a high molarity NaOH solution and elevated curing temperature enhanced resistance to HCl attack more effectively than H₂SO₄ and MgSO₄. Moreover, the experimental data closely aligned with the ACI 318 design code, though it tended to overestimate tensile strength.
Downloads
[1] Desole, M. P., Fedele, L., Gisario, A., & Barletta, M. (2024). Life Cycle Assessment (LCA) of ceramic sanitaryware: focus on the production process and analysis of scenario. International Journal of Environmental Science and Technology, 21(2), 1649–1670. doi:10.1007/s13762-023-05074-6.
[2] Cuviella-Suárez, C., Borge-Diez, D., & Colmenar-Santos, A. (2021). Introduction to Ceramic Sanitary-Ware Manufacturing. Water and Energy Use in Sanitary-ware Manufacturing. Green Energy and Technology. Springer, Cham, Switzerland. doi:10.1007/978-3-030-72491-7_1.
[3] Furszyfer Del Rio, D. D., Sovacool, B. K., Foley, A. M., Griffiths, S., Bazilian, M., Kim, J., & Rooney, D. (2022). Decarbonizing the ceramics industry: A systematic and critical review of policy options, developments and sociotechnical systems. Renewable and Sustainable Energy Reviews, 157. doi:10.1016/j.rser.2022.112081.
[4] Santos, T., Almeida, J., Silvestre, J. D., & Faria, P. (2021). Life cycle assessment of mortars: A review on technical potential and drawbacks. Construction and Building Materials, 288. doi:10.1016/j.conbuildmat.2021.123069.
[5] Pitarch, A. M., Reig, L., Tomás, A. E., Forcada, G., Soriano, L., Borrachero, M. V., Payá, J., & Monzó, J. M. (2021). Pozzolanic activity of tiles, bricks and ceramic sanitary-ware in eco-friendly Portland blended cements. Journal of Cleaner Production, 279, 123713. doi:10.1016/j.jclepro.2020.123713.
[6] Bernasconi, A., Pellegrino, L., Vergani, F., Campanale, F., Marian, N. M., Galimberti, L., Perotti, M., Viti, C., & Capitani, G. (2023). Recycling detoxified cement asbestos slates in the production of ceramic sanitary wares. Ceramics International, 49(2), 1836–1845. doi:10.1016/j.ceramint.2022.09.147.
[7] Farinha, C. B., Silvestre, J. D., de Brito, J., & Veiga, M. do R. (2019). Life cycle assessment of mortars with incorporation of industrial wastes. Fibers, 7(7), 59. doi:10.3390/FIB7070059.
[8] Pather, B., Ekolu, S. O., & Quainoo, H. (2021). Effects of aggregate types on acid corrosion attack upon fly–Ash geopolymer and Portland cement concretes–Comparative study. Construction and Building Materials, 313, 125468. doi:10.1016/j.conbuildmat.2021.125468.
[9] Bakharev, T. (2005). Durability of geopolymer materials in sodium and magnesium sulfate solutions. Cement and Concrete Research, 35(6), 1233–1246. doi:10.1016/j.cemconres.2004.09.002.
[10] Noushini, A., Castel, A., Aldred, J., & Rawal, A. (2020). Chloride diffusion resistance and chloride binding capacity of fly ash-based geopolymer concrete. Cement and Concrete Composites, 105. doi:10.1016/j.cemconcomp.2019.04.006.
[11] Kaplan, G., Yavuz Bayraktar, O., Bayrak, B., Celebi, O., Bodur, B., Oz, A., & Aydin, A. C. (2023). Physico-mechanical, thermal insulation and resistance characteristics of diatomite and attapulgite based geopolymer foam concrete: Effect of different curing regimes. Construction and Building Materials, 373. doi:10.1016/j.conbuildmat.2023.130850.
[12] Liu, M. Y. J., Alengaram, U. J., Jumaat, M. Z., & Mo, K. H. (2014). Evaluation of thermal conductivity, mechanical and transport properties of lightweight aggregate foamed geopolymer concrete. Energy and Buildings, 72, 238–245. doi:10.1016/j.enbuild.2013.12.029.
[13] Eisa, M. S., Basiouny, M. E., & Fahmy, E. A. (2022). Drying shrinkage and thermal expansion of metakaolin-based geopolymer concrete pavement reinforced with biaxial geogrid. Case Studies in Construction Materials, 17, 1415. doi:10.1016/j.cscm.2022.e01415.
[14] Miranda, J. M., Fernández-Jiménez, A., González, J. A., & Palomo, A. (2005). Corrosion resistance in activated fly ash mortars. Cement and Concrete Research, 35(6), 1210–1217. doi:10.1016/j.cemconres.2004.07.030.
[15] Kupwade-Patil, K., & Allouche, E. N. (2013). Examination of Chloride-Induced Corrosion in Reinforced Geopolymer Concretes. Journal of Materials in Civil Engineering, 25(10), 1465–1476. doi:10.1061/(asce)mt.1943-5533.0000672.
[16] Chindaprasirt, P., & Chalee, W. (2014). Effect of sodium hydroxide concentration on chloride penetration and steel corrosion of fly ash-based geopolymer concrete under marine site. Construction and Building Materials, 63, 303–310. doi:10.1016/j.conbuildmat.2014.04.010.
[17] Noushini, A., & Castel, A. (2016). The effect of heat-curing on transport properties of low-calcium fly ash-based geopolymer concrete. Construction and Building Materials, 112, 464–477. doi:10.1016/j.conbuildmat.2016.02.210.
[18] Reddy, D. V., Edouard, J.-B., & Sobhan, K. (2013). Durability of Fly Ash–Based Geopolymer Structural Concrete in the Marine Environment. Journal of Materials in Civil Engineering, 25(6), 781–787. doi:10.1061/(asce)mt.1943-5533.0000632.
[19] Olivia, M., & Nikraz, H. (2012). Properties of fly ash geopolymer concrete designed by Taguchi method. Materials and Design, 36, 191–198. doi:10.1016/j.matdes.2011.10.036.
[20] Geraldo, R. H., Fernandes, L. F. R., & Camarini, G. (2021). Mechanical properties of porcelain waste alkali-activated mortar. Open Ceramics, 8, 100184. doi:10.1016/j.oceram.2021.100184.
[21] Aldawsari, S., & Kampmann, R. (2025). Durability of fly ash/slag geopolymers: Role of OPC and silica under sulfate attack. Construction and Building Materials, 465, 139855. doi:10.1016/j.conbuildmat.2025.139855.
[22] Singh, R. P., Vanapalli, K. R., Jadda, K., & Mohanty, B. (2024). Durability assessment of fly ash, GGBS, and silica fume based geopolymer concrete with recycled aggregates against acid and sulfate attack. Journal of Building Engineering, 82, 108354. doi:10.1016/j.jobe.2023.108354.
[23] Bai, Y., Guo, W., Zhao, Q., Zhang, N., Xue, C., Wang, S., & Song, Y. (2023). Performance deterioration of municipal solid waste incineration fly ash-based geopolymer under sulfuric acid attack. Construction and Building Materials, 391, 131847. doi:10.1016/j.conbuildmat.2023.131847.
[24] Berkouche, A., Belkadi, A. A., Benaddache, L., Tayebi, T., & Aggoun, S. (2025). Enhancing physical, mechanical, and durability properties of slag-based geopolymers through ceramic waste incorporation: A comprehensive optimization study. Journal of the Taiwan Institute of Chemical Engineers, 172, 106144. doi:10.1016/j.jtice.2025.106144.
[25] Abdelmonem, A. M., Azam, A., Alruwaili, A., Ouda, A. S., & Elrahman, M. A. (2025). Effect of ceramic tile waste addition on the performance of slag-based geopolymer upon exposure to marine conditions: Physico-mechanical characteristics, and shielding proficiency against ionizing radiation. Sustainable Chemistry and Pharmacy, 43, 101886. doi:10.1016/j.scp.2024.101886.
[26] Mohebi, R., Behfarnia, K., & Shojaei, M. (2015). Abrasion resistance of alkali-activated slag concrete designed by Taguchi method. Construction and Building Materials, 98, 792–798. doi:10.1016/j.conbuildmat.2015.08.128.
[27] Yan, B., Duan, P., & Ren, D. (2017). Mechanical strength, surface abrasion resistance and microstructure of fly ash-metakaolin-sepiolite geopolymer composites. Ceramics International, 43(1), 1052–1060. doi:10.1016/j.ceramint.2016.10.039.
[28] Luhar, S., Chaudhary, S., & Luhar, I. (2019). Development of rubberized geopolymer concrete: Strength and durability studies. Construction and Building Materials, 204, 740–753. doi:10.1016/j.conbuildmat.2019.01.185.
[29] Witzke, F. B., Beltrame, N. A. M., Angulski da Luz, C., & Medeiros-Junior, R. A. (2023). Abrasion resistance of metakaolin-based geopolymers through accelerated testing and natural wear. Wear, 530–531. doi:10.1016/j.wear.2023.204996.
[30] Noushini, A., Hastings, M., Castel, A., & Aslani, F. (2018). Mechanical and flexural performance of synthetic fibre reinforced geopolymer concrete. Construction and Building Materials, 186, 454–475. doi:10.1016/j.conbuildmat.2018.07.110.
[31] Arslan, A. A., Uysal, M., Yılmaz, A., Al-mashhadani, M. M., Canpolat, O., Şahin, F., & Aygörmez, Y. (2019). Influence of wetting-drying curing system on the performance of fiber reinforced metakaolin-based geopolymer composites. Construction and Building Materials, 225, 909–926. doi:10.1016/j.conbuildmat.2019.07.235.
[32] ASTM C496/C496M-11. (2017). Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens. ASTM International, Pennsylvania, United States. doi:10.1520/C0496_C0496M-11.
[33] ASTM C39/C39M-99. (2017). Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens. ASTM International, Pennsylvania, United States. doi:10.1520/C0039_C0039M-99.
[34] Yang, W., Zhu, P., Liu, H., Wang, X., Ge, W., & Hua, M. (2021). Resistance to sulfuric acid corrosion of geopolymer concrete based on different binding materials and Alkali concentrations. Materials, 14(23), 7109. doi:10.3390/ma14237109.
[35] Aiken, T. A., Kwasny, J., Sha, W., & Soutsos, M. N. (2018). Effect of slag content and activator dosage on the resistance of fly ash geopolymer binders to sulfuric acid attack. Cement and Concrete Research, 111, 23–40. doi:10.1016/j.cemconres.2018.06.011.
[36] Patrisia, Y., Law, D. W., Gunasekara, C., & Wardhono, A. (2022). Fly ash geopolymer concrete durability to sulphate, acid and peat attack. MATEC Web of Conferences, 364, 02003. doi:10.1051/matecconf/202236402003.
[37] Sata, V., Sathonsaowaphak, A., & Chindaprasirt, P. (2012). Resistance of lignite bottom ash geopolymer mortar to sulfate and sulfuric acid attack. Cement and Concrete Composites, 34(5), 700–708. doi:10.1016/j.cemconcomp.2012.01.010.
[38] Izzat, A. M., Al Bakrt, A. M. M., Kamarudin, H., Sandu, A. V., Ruzaidi, G. C. M., Faheem, M. T. M., & Moga, L. M. (2013). Sulfuric acid attack on ordinary Portland cement and geopolymer material. Revista de Chimie, 64(9), 1011–1014.
[39] Zuda, L., Bayer, P., Rovnaník, P., & Černý, R. (2008). Mechanical and hydric properties of alkali-activated aluminosilicate composite with electrical porcelain aggregates. Cement and Concrete Composites, 30(4), 266–273. doi:10.1016/j.cemconcomp.2007.11.003.
[40] Amigó, J. M., Serrano, F. J., Kojdecki, M. A., Bastida, J., Esteve, V., Reventós, M. M., & Martí, F. (2005). X-ray diffraction microstructure analysis of mullite, quartz and corundum in porcelain insulators. Journal of the European Ceramic Society, 25(9), 1479–1486. doi:10.1016/j.jeurceramsoc.2004.05.019.
[41] Valencia-Saavedra, W. G., de Gutiérrez, R. M., & Puertas, F. (2020). Performance of FA-based geopolymer concretes exposed to acetic and sulfuric acids. Construction and Building Materials, 257, 119503. doi:10.1016/j.conbuildmat.2020.119503.
[42] Allahverdi, A., & Skvara, F. (2001). Nitric acid attack on hardened paste of geopolymeric cements, Part 1. Ceramics Silikaty, 45(3), 81-88.
[43] Javed, U., Shaikh, F. U. A., & Sarker, P. K. (2024). Corrosive effect of HCl and H2SO4 exposure on the strength and microstructure of lithium slag geopolymer mortars. Construction and Building Materials, 411, 134588. doi:10.1016/j.conbuildmat.2023.134588.
[44] Kaya, M., Köksal, F., Nodehi, M., Bayram, M., Gencel, O., & Ozbakkaloglu, T. (2022). The Effect of Sodium and Magnesium Sulfate on Physico-Mechanical and Microstructural Properties of Kaolin and Ceramic Powder-Based Geopolymer Mortar. Sustainability (Switzerland), 14(20), 13496. doi:10.3390/su142013496.
[45] Sofi, M., van Deventer, J. S. J., Mendis, P. A., & Lukey, G. C. (2007). Engineering properties of inorganic polymer concretes (IPCs). Cement and Concrete Research, 37(2), 251–257. doi:10.1016/j.cemconres.2006.10.008.
[46] Djwantoro, H., & Rangan, B. V. (2005). Development and properties of low-calcium fly ash-based geopolymer concrete. Research Report GC 1, Curtin University Of Technology, Perth, Australia.
[47] Kränzlein, E., Harmel, J., Pöllmann, H., & Krcmar, W. (2019). Influence of the Si/Al ratio in geopolymers on the stability against acidic attack and the immobilization of Pb2+ and Zn2+. Construction and Building Materials, 227. doi:10.1016/j.conbuildmat.2019.08.015.
[48] Chen, M., Wu, D., Chen, K., Liu, C., Zhou, G., & Cheng, P. (2025). The effects of solid activator dosage and the liquid-solid ratio on the properties of FA-GGBS based one-part geopolymer. Construction and Building Materials, 463. doi:10.1016/j.conbuildmat.2025.140067.
[49] Alzeebaree, R., Çevik, A., Nematollahi, B., Sanjayan, J., Mohammedameen, A., & Gülşan, M. E. (2019). Mechanical properties and durability of unconfined and confined geopolymer concrete with fiber reinforced polymers exposed to sulfuric acid. Construction and Building Materials, 215, 1015–1032. doi:10.1016/j.conbuildmat.2019.04.165.
[50] Temuujin, J., Minjigmaa, A., Lee, M., Chen-Tan, N., & Van Riessen, A. (2011). Characterisation of class F fly ash geopolymer pastes immersed in acid and alkaline solutions. Cement and Concrete Composites, 33(10), 1086–1091. doi:10.1016/j.cemconcomp.2011.08.008.
[51] Rovnaník, P. (2010). Effect of curing temperature on the development of hard structure of metakaolin-based geopolymer. Construction and Building Materials, 24(7), 1176–1183. doi:10.1016/j.conbuildmat.2009.12.023.
[52] Wan-En, O., Yun-Ming, L., Cheng-Yong, H., Abdullah, M. M. A. B., Ngee, H. L., Pakawanit, P., Lee, W. H., Ken, P. W., Hoe-Woon, T., & Yu-Xin, Y. (2024). Magnesium sulphate resistance of fly ash one-part geopolymers: Influence of solid alkali activators on physical, mechanical and chemical performance. Construction and Building Materials, 446, 137971 10 1016 2024 137971. doi:10.1016/j.conbuildmat.2024.137971.
[53] Li, Y., Huang, L., Gao, C., Mao, Z., & Qin, M. (2023). Workability and mechanical properties of GGBS-RFBP-FA ternary composite geopolymer concrete with recycled aggregates containing recycled fireclay brick aggregates. Construction and Building Materials, 392, 131450. doi:10.1016/j.conbuildmat.2023.131450.
[54] Ismail, I., Bernal, S. A., Provis, J. L., Hamdan, S., & Van Deventer, J. S. J. (2013). Microstructural changes in alkali activated fly ash/slag geopolymers with sulfate exposure. Materials and Structures/Materiaux et Constructions, 46(3), 361–373. doi:10.1617/s11527-012-9906-2.
[55] Baščarević, Z., Komljenović, M., Miladinović, Z., Nikolić, V., Marjanović, N., & Petrović, R. (2014). Impact of sodium sulfate solution on mechanical properties and structure of fly ash based geopolymers. Materials and Structures/Materiaux et Constructions, 48(3), 683–697. doi:10.1617/s11527-014-0325-4.
[56] Zhang, B., Huang, D., Li, L., Lin, M., Liu, Y., Fang, W., Lu, J., Liu, F., Li, Y., Liu, Y., & Xiong, Z. (2022). Effect of magnesium salt contamination on the microstructures and properties of metakaolinite-based geopolymer: the role of MgCl2and MgSO4. Journal of Materials Research and Technology, 20, 4500–4514. doi:10.1016/j.jmrt.2022.09.019.
[57] Thokchom, S., Ghosh, P., & Ghosh, S. (2009). Resistance of fly ash based geopolymer mortars in sulfuric acid. ARPN Journal of Engineering and Applied Sciences, 4(1), 65-70.
[58] Al-Jabali, H. M., El-Latief, A. A., Ezz, M. S., Khairy, S., & Nada, A. A. (2024). GGBFS and Red-Mud based Alkali-Activated Concrete Beams: Flexural, Shear and Pull-Out Test Behavior. Civil Engineering Journal, 10(5), 1494–1512. doi:10.28991/CEJ-2024-010-05-09.
[59] Javed, U., Shaikh, F. U. A., & Sarker, P. K. (2022). Microstructural investigation of lithium slag geopolymer pastes containing silica fume and fly ash as additive chemical modifiers. Cement and Concrete Composites, 134, 104736. doi:10.1016/j.cemconcomp.2022.104736.
[60] Intarabut, D., Sukontasukkul, P., Phoo-ngernkham, T., Hanjitsuwan, S., Sata, V., Chumpol, P., … Chindaprasirt, P. (2024). Role of Slag Replacement on Strength Enhancement of One-Part High-Calcium Fly Ash Geopolymer. Civil Engineering Journal, 10, 252–270. doi:10.28991/CEJ-SP2024-010-013.
[61] Vafaei, M., Allahverdi, A., Dong, P., Bassim, N., & Mahinroosta, M. (2021). Resistance of red clay brick waste/phosphorus slag-based geopolymer mortar to acid solutions of mild concentration. Journal of Building Engineering, 34, 102066. doi:10.1016/j.jobe.2020.102066.
[62] Kohout, J., Koutník, P., Hájková, P., Kohoutová, E., Soukup, A., & Vakili, M. (2023). Effect of Aluminosilicates’ Particle Size Distribution on the Microstructural and Mechanical Properties of Metakaolinite-Based Geopolymers. Materials, 16(14), 5008. doi:10.3390/ma16145008.
[63] Jiao, Z., Li, X., Yu, Q., Yao, Q., & Hu, P. (2023). Sulfate resistance of class C/class F fly ash geopolymers. Journal of Materials Research and Technology, 23, 1767–1780. doi:10.1016/j.jmrt.2023.01.131.
[64] Kwasny, J., Aiken, T. A., Soutsos, M. N., McIntosh, J. A., & Cleland, D. J. (2018). Sulfate and acid resistance of lithomarge-based geopolymer mortars. Construction and Building Materials, 166, 537–553. doi:10.1016/j.conbuildmat.2018.01.129.
[65] Lavanya, G., & Jegan, J. (2015). Evaluation of relationship between split tensile strength and compressive strength for geopolymer concrete of varying grades and molarity. International Journal of Applied Engineering Research, 10(15), 35523–35529.
[66] ACI 318. (1999). Building Code Requirements for Structural Concrete. American Concrete Institute (ACI), Farmington Hills, United States.
[67] ACI 363. (1992). State-of-the-Art Report on High Strength Concrete. American Concrete Institute (ACI), Farmington Hills, United States.
[68] Raphael, J. M. (1984). Tensile Strength of Concrete. Journal of the American Concrete Institute, 81(2), 158–165. doi:10.1007/978-3-642-41714-6_200519.
[69] Oluokun, F. A., Burdette, E. G., & Deatherage, J. H. (1991). Splitting tensile strength and compressive strength relationship at early ages. ACI Materials Journal, 88(2), 115–121. doi:10.14359/1859.
[70] Arioglu, N., Canan Girgin, Z., & Arioglu, E. (2006). Evaluation of ratio between splitting tensile strength and compressive strength for concretes up to 120 MPa and its application in strength criterion. ACI Materials Journal, 103(1), 18–24. doi:10.14359/15123.
[71] Gartner, E. (2004). Industrially interesting approaches to “low-CO2” cements. Cement and Concrete Research, 34(9), 1489–1498. doi:10.1016/j.cemconres.2004.01.021.
[72] Ramujee, K., & Potharaju, M. (2017). Mechanical Properties of Geopolymer Concrete Composites. Materials Today: Proceedings, 4(2), 2937–2945. doi:10.1016/j.matpr.2017.02.175.
[73] Zain, M. F. M., Mahmud, H. B., Ilham, A., & Faizal, M. (2002). Prediction of splitting tensile strength of high-performance concrete. Cement and Concrete Research, 32(8), 1251–1258. doi:10.1016/S0008-8846(02)00768-8.
[74] Bin Ahmed, F., Biswas, R. K., Abid Ahsan, K., Islam, S., & Rahman, M. R. (2021). Estimation of strength properties of geopolymer concrete. Materials Today: Proceedings, 44(1), 871–877. doi:10.1016/j.matpr.2020.10.790.
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.