Hydraulic Conditions Created by Passing Flow Through and Over a Combined Weir

Saad Mulahasan, Fadhil M. Al-Mohammed, Nagham Rajaa, Karim R. Gubashi

Abstract


In this study, a novel broad-crested weir was designed to investigate the effect of varying rectangular gate widths (vertical slots) on the discharge coefficient and free surface profile of a compound weir. Six weir models with vertical slots were theoretically and experimentally examined in a laboratory flume under uniform flow conditions. Each weir model measured 9.5 cm in height, 30 cm in length, and 10 cm in width. The vertical slots were uniformly 7.5 cm in height, with six different widths ranging from 0.5 cm to 3.0 cm, corresponding to a range of opening area ratios (OAR) from 10% to 60%. Under different head conditions, six flow rates between 10 and 35 m³/hr were tested. Dimensional analysis and multivariable regression techniques were applied to derive a formula relating the discharge coefficient to key influencing variables. These variables include the ratio of total energy head to flume width (Ht/B), the ratio of upstream water head to flume width (Hw/B), and the ratio of slot width to flume width (Bg/B). The results indicated that the discharge coefficient (Cd) of the compound weir increases with both Ht/B and Hw/B, and with increasing slot width (Bg/B). The proposed model, which describes the relationship between measured and computed discharge coefficients, demonstrated excellent accuracy, with R²= 0.998. Furthermore, the findings showed that the width of the weir openings has a significant impact on upstream water depth, downstream free surface profiles, and the hydraulic characteristics of the resulting flow transitions.

 

Doi: 10.28991/CEJ-2025-011-05-016

Full Text: PDF


Keywords


Combined Weir; Discharge Coefficient; Free Surface Profiles; Experimental Work; Open Channel Flow.

References


Hager, W. H., & Schwalt, M. (1994). Broad-Crested Weir. Journal of Irrigation and Drainage Engineering, 120(1), 13–26. doi:10.1061/(asce)0733-9437(1994)120:1(13).

Tracy, H. J. (1957). Discharge characteristics of broad-crested weirs (Volume 397). US Department of the Interior, Geological Survey, Reston, United States.

Moss, W. D. (1972). Flow separation at the upstream edge of a square-edged broad-crested weir. Journal of Fluid Mechanics, 52(2), 307–320. doi:10.1017/S0022112072001430.

Salmasi, F., Poorescandar, S., Dalir, A. H., & Zadeh, D. F. (2011). Discharge relations for rectangular broad-crested weirs. Tarim Bilimleri Dergisi, 17(4), 324–336. doi:10.1501/tarimbil_0000001184.

Al-Hashimi, S. A., Madhloom, H. M., & Nahi, T. N. (2017). Experimental and numerical simulation of flow over broad crested weir and stepped weir using different turbulence models. Journal of Engineering and Sustainable Development, 21(2), 28-45.

Jiang, L., Diao, M., Sun, H., & Ren, Y. (2018). Numerical modeling of flow over a rectangular broad-crested weir with a sloped upstream face. Water (Switzerland), 10(11), 1663. doi:10.3390/w10111663.

Zhuk, V., Vovk, L., Popadiuk, I., & Matlai, I. (2021). Discharge coefficient of rectangular broad-crested weirs in narrow channels with high relative length of the threshold. Ecological Engineering and Environmental Technology, 22(6), 11–16. doi:10.12912/27197050/141877.

Nouri, M., Sihag, P., Kisi, O., Hemmati, M., Shahid, S., & Adnan, R. M. (2023). Prediction of the Discharge Coefficient in Compound Broad-Crested-Weir Gate by Supervised Data Mining Techniques. Sustainability (Switzerland), 15(1), 433. doi:10.3390/su15010433.

Djunur, L. H., Pallu, M. S., Karamma, R., & Bakri, B. (2024). Effect of Porous Rectangular Type Baffle Block Angle on Hydraulic Jump Downstream of Spillway. Civil Engineering Journal, 10(10), 3173-3193. doi:10.28991/CEJ-2024-010-10-04.

Hadano, K., Tatara, K., Nagano, H., & Muraoka, K. (2023). Evaluation of the Upstream Water Level of the Flow Over Finite-Length Weirs with Rectangular Cross-Section in the Flow Direction. Journal of Japan Society of Civil Engineers, 11(1), 23–00138. doi:10.2208/journalofjsce.23-00138.

Alhamid, A. A., Negm, A. A. M., & Al-Brahim, A. M. (1997). Discharge Equation for Proposed Self-cleaning Device. Journal of King Saud University - Engineering Sciences, 9(1), 13–23. doi:10.1016/S1018-3639(18)30664-0.

Mohamed, H. I. (2010). Flow over Gabion Weirs. Journal of Irrigation and Drainage Engineering, 136(8), 573–577. doi:10.1061/(asce)ir.1943-4774.0000215.

Salmasi, F., & Sattari, M. T. (2017). Predicting discharge coefficient of rectangular broad-crested gabion weir using M5 tree model. Iranian Journal of Science and Technology - Transactions of Civil Engineering, 41(2), 205–212. doi:10.1007/s40996-017-0052-5.

‬ ‫ Al-Mohammed, F. M., & Mohammed, S. H. (2015). Flow through and over gravel gabion weirs. Journal of Kerbala University, 13(25), 193-205.‬‬‬‬‬‬‬

Safarzadeh, A., & Mohajeri, S. H. (2018). Hydrodynamics of Rectangular Broad-Crested Porous Weirs. Journal of Irrigation and Drainage Engineering, 144(10), 4018028. doi:10.1061/(asce)ir.1943-4774.0001338.

Fathi-moghaddam, M., Sadrabadi, M. T., & Rahmanshahi, M. (2018). Numerical simulation of the hydraulic performance of triangular and trapezoidal gabion weirs in free flow condition. Flow Measurement and Instrumentation, 62, 93–104. doi:10.1016/j.flowmeasinst.2018.05.005.

Shariq, A., Hussain, A., & Ahmad, Z. (2020). Discharge equation for the gabion weir under through flow condition. Flow Measurement and Instrumentation, 74, 101769. doi:10.1016/j.flowmeasinst.2020.101769.

Salmasi, F., Sabahi, N., & Abraham, J. (2021). Discharge Coefficients for Rectangular Broad-Crested Gabion Weirs: Experimental Study. Journal of Irrigation and Drainage Engineering, 147(3), 4021001. doi:10.1061/(asce)ir.1943-4774.0001535.

Basnet, K., & Constantinescu, G. (2017). The structure of turbulent flow around vertical plates containing holes and attached to a channel bed. Physics of Fluids, 29(11), 115101. doi:10.1063/1.5009310.

Negm, A. A. M., Al-Brahim, A. M., & Alhamid, A. A. (2002). Combined-free flow over weirs and below gates. Journal of Hydraulic Research, 40(3), 359–365. doi:10.1080/00221680209499950.

Hayawi, H. A. M., Yahia, A. A. G., & Hayawi, G. A. M. (2008). Free combined flow over a triangular weir and under rectangular gate. Damascus University Journal, 24(1), 9-22.

AL-Saadi, A. K. I. (2013). Study coefficient of discharge for a combined free flow over weir and under gate for multi cases. Euphrates journal of agriculture science, 5(4), 26-35.

Guven, A., Hassan, M., & Sabir, S. (2013). Experimental investigation on discharge coefficient for a combined broad crested weir-box culvert structure. Journal of Hydrology, 500, 97–103. doi:10.1016/j.jhydrol.2013.07.021.

Nouri, M., & Hemmati, M. (2020). Discharge coefficient in the combined weir-gate structure. Flow Measurement and Instrumentation, 75, 101780. doi:10.1016/j.flowmeasinst.2020.101780.

Zeinivand, M., Barani, S., & Ghomeshi, M. (2024). Investigating the process of changing the discharge coefficient of the flow passing through the combined structure of rectangular sharp-crested weir with multiple-gates. Ain Shams Engineering Journal, 15(2), 102418. doi:10.1016/j.asej.2023.102418.

Daneshfaraz, R., Minaei, O., Abraham, J., Dadashi, S., & Ghaderi, A. (2021). 3-D Numerical simulation of water flow over a broad-crested weir with openings. ISH Journal of Hydraulic Engineering, 27(S1), 88–96. doi:10.1080/09715010.2019.1581098.

Abdel Halim, N. A., Sherif, M. M., & El-Zaher, A. S. (1991). On the Fayoum weirs with orifices. Journal of Engineering and Applied Science, 38(5), 893-904.

Elazizy I.M. (2005). Hydraulic characteristics of weir with a slot. Engineering Research Journal, 2005(99), 149–63.

Samani, J. M., & Mazaheri, M. (2009). Combined Flow over Weir and under Gate. Journal of Hydraulic Engineering, 135(3), 224–227. doi:10.1061/(asce)0733-9429(2009)135:3(224).

Mohamed, H. I., Abozeid, G., & Shehata, S. M. (2010). Hydraulics of clear and submerged overfall weirs with bottom circular-openings. Ain Shams Engineering Journal, 1(2), 115–119. doi:10.1016/j.asej.2011.03.004.

Saad, N. Y., & Fattouh, E. M. (2017). Hydraulic characteristics of flow over weirs with circular openings. Ain Shams Engineering Journal, 8(4), 515–522. doi:10.1016/j.asej.2016.05.007.

Ohmoto, T., & Hirotaka, U. (2019). Effects Of Weir Within Opening on Bed Configuration and Flow Structure. 38th IAHR World Congress: Water: Connecting the World, 38, 33–40. doi:10.3850/38wc092019-0740.

Salehi, S., & Azimi, A. H. (2019). Discharge Characteristics of Weir-Orifice and Weir-Gate Structures. Journal of Irrigation and Drainage Engineering, 145(11), 4019025. doi:10.1061/(asce)ir.1943-4774.0001421.

Jalil, S. A., & Sarhan, S. A. (2013). Experimental study of combined oblique weir and gate structure. ARPN Journal of Engineering and Applied Sciences, 8(4), 306-315.

Al-Suhaili, R. H., Al-Baidhani, J. H., & Al-Mansori, N. (2014). Hydraulic characteristics of a rectangular weir combined with equal and unequal size three rectangular bottom openings. International Journal of Computational Engineering Research, 4(1), 13-29.

Fu, Z. F., Cui, Z., Dai, W. H., & Chen, Y. J. (2018). Discharge coefficient of combined orifice-weir flow. Water (Switzerland), 10(6), 699. doi:10.3390/w10060699.

El-Belasy, A. M. (2013). Developing Formulae for combined weir and orifice (case study: EL-Fayoum weirs). Alexandria Engineering Journal, 52(4), 763–768. doi:10.1016/j.aej.2013.08.001.

El-Baradei, S. A., El-Abd, M., & Hazem, N. (2024). Estimate of Power Output from Hydraulic Jumps Generated Downstream from Barrages. Journal of Human, Earth, and Future, 5(1), 72-84. doi:10.28991/HEF-2024-05-01-06.

Alsaydalani, M. O. A. (2024). Discharge Coefficient of a Two-Rectangle Compound Weir combined with a Semicircular Gate beneath it under Various Hydraulic and Geometric Conditions. Engineering, Technology and Applied Science Research, 14(1), 12587–12594. doi:10.48084/etasr.6605.

Gubashi, K. R., Al-Hashimi, S. A., Mulahasan, S., & Al-Madhhachi, A. S. T. (2024). A Numerical Model to Evaluate Flow Characteristics in a Circular Vegetation Patch for Flume Experiments. Journal of Applied Science and Engineering, 28(1), 75–91. doi:10.6180/jase.202501_28(1).0008.

Gubashi, K. R., Mulahasan, S., Jameel, M. A., & Al-Madhhachi, A. S. T. (2022). Evaluation drag coefficients for circular patch vegetation with different riverbed roughness. Cogent Engineering, 9(1), 2044574. doi:10.1080/23311916.2022.2044574.

Daneshfaraz, R., Majedi Asl, M., Razmi, S., Norouzi, R., & Abraham, J. (2020). Experimental investigation of the effect of dual horizontal screens on the hydraulic performance of a vertical drop. International Journal of Environmental Science and Technology, 17(5), 2927–2936. doi:10.1007/s13762-019-02622-x.

Al-Hashimi, S. A. M., Al-Osmy, S. A. T., & Mulahasan, S. (2020). Water surface profile and flow pattern simulation over bridge deck slab. Journal of Engineering Science and Technology, 15(1), 291–304.

Kara, S., Mulahasan, S., Stoesser, T., & Sturm, T. (2014). Water surface response to flow through bridge openings. River Flow, 693–699, CRC Press, Boca Raton, United States. doi:10.1201/b17133-95.

Kara, S., Stoesser, T., Sturm, T. W., & Mulahasan, S. (2015). Flow dynamics through a submerged bridge opening with overtopping. Journal of Hydraulic Research, 53(2), 186–195. doi:10.1080/00221686.2014.967821.


Full Text: PDF

DOI: 10.28991/CEJ-2025-011-05-016

Refbacks

  • There are currently no refbacks.




Copyright (c) 2025 Saad Mulahasan, Fadhil M. Al-Mohammed, Nagham Rajaa, Karim R Gubashi

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message