Manholes Detecting and Mapping Using Open-World Object Detection and GIS Integration
Abstract
Doi: 10.28991/CEJ-2025-011-04-07
Full Text: PDF
Keywords
References
Rasheed, W. M., Abdulla, R., & San, L. Y. (2021). Manhole cover monitoring system over IOT. Journal of Applied Technology and Innovation, 5(3), 1-6.
Alshaiba, O., Núñez-Andrés, M. A., & Lantada, N. (2020). Automatic manhole extraction from MMS data to update basemaps. Automation in Construction, 113, 103110. doi:10.1016/j.autcon.2020.103110.
Oulahyane, A., & Kodad, M. (2024). Advancing Urban Infrastructure Safety: Modern Research in Deep Learning for Manhole Situation Supervision Through Drone Imaging and Geographic Information System Integration. International Journal of Advanced Computer Science and Applications, 15(7), 211–219. doi:10.14569/IJACSA.2024.0150721.
Vishnani, V., Adhya, A., Bajpai, C., Chimurkar, P., & Khandagle, K. (2020). Manhole Detection using Image Processing on Google Street View imagery. 2020 Third International Conference on Smart Systems and Inventive Technology (ICSSIT), 684–688. doi:10.1109/icssit48917.2020.9214219.
Wei, Z., Yang, M., Wang, L., Ma, H., Chen, X., & Zhong, R. (2019). Customized Mobile LiDAR System for Manhole Cover Detection and Identification. Sensors, 19(10), 2422. doi:10.3390/s19102422.
Boller, D., Moy de Vitry, M., D. Wegner, J., & Leitão, J. P. (2019). Automated localization of urban drainage infrastructure from public-access street-level images. Urban Water Journal, 16(7), 480–493. doi:10.1080/1573062X.2019.1687743.
Mishra, R., Patil, C., Kasture, S., Dhake, D. (2022). Manhole Quality Management and Sensing Using IOT. International Journal of Advanced Research in Science, Communication and Technology, 512–515. doi:10.48175/ijarsct-4533.
Wang, D., & Huang, Y. (2024). Manhole Cover Classification Based on Super-Resolution Reconstruction of Unmanned Aerial Vehicle Aerial Imagery. Applied Sciences (Switzerland), 14(7), 2769. doi:10.3390/app14072769.
Yang, L., Hao, Z., Hu, B., Shan, C., Wei, D., & He, D. (2024). Improved YOLOX-based detection of condition of road manhole covers. Frontiers in Built Environment, 10, 10. doi:10.3389/fbuil.2024.1337984.
M, A., S, K., & T, S. (2022). Smart Manhole Managing and Monitoring System using IoT. International Journal for Research in Applied Science and Engineering Technology, 11(12), 998–1001. doi:10.4108/eai.16-4-2022.2318149.
Xiao, Y., Li, S., Li, Z., & Qu, Z. (2023). Design of an Intelligent Manhole Cover System Based on BeiDou Navigation. 2023 13th International Conference on Information Technology in Medicine and Education (ITME), 505–509. doi:10.1109/itme60234.2023.00106.
Kumar, S. V. S., Padmaja, J. N., Mattaparty, S. H., Ismail, S., Varma, N. M. K., & Vaishnavi, P. (2024). Data-Driven Urban Safety: A CNN-Based Predictive Model for Manhole Hazard Detection. 2024 IEEE Students Conference on Engineering and Systems (SCES), 1–5. doi:10.1109/sces61914.2024.10652445.
Yadav, M., Lohani, B., & Goel, S. (2022). Geometric and radiometric constraints-based extraction of urban road manhole covers and their maintenance-related information using mobile laser scanning data. Geocarto International, 37(27), 16716–16735. doi:10.1080/10106049.2022.2115151.
Rajasekar, A., Aditya, J. J., Sundar, K. S., Suman, M., & Danush, S. (2024, April). Drain Block Detection and Controlling System. In 2024 International Conference on Communication, Computing and Internet of Things (IC3IoT), 1-4. doi:10.1109/IC3IoT60841.2024.10550345.
Liu, Y., Du, M., Jing, C., & Bai, Y. (2013). Design of supervision and management system for ownerless manhole covers based on RFID. 2013 21st International Conference on Geoinformatics, 1–4. doi:10.1109/geoinformatics.2013.6626149.
Commandre, B., En-Nejjary, D., Pibre, L., Chaumont, M., Delenne, C., & Chahinian, N. (2017). Manhole Cover Localization in Aerial Images with a Deep Learning Approach. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-1/W1, 333–338. doi:10.5194/isprs-archives-xlii-1-w1-333-2017.
Nan, T., Xiangyang, M., Lin, L., Liu, C., & Xiuhan, J. (2003). Manhole detection and location for urban pavement. Proceedings of the 2003 IEEE International Conference on Intelligent Transportation Systems, 2, 1552–1555. doi:10.1109/itsc.2003.1252744.
Moccardi, A. (2023). AI Driven Potholes Detection for Equitable Repair Prioritization: Human centred AI-driven methodology as support of road management system. Proceedings of the 2023 Conference on Human Centered Artificial Intelligence: Education and Practice, 56–56. doi:10.1145/3633083.3633224.
Kumar, S. V. S., Padmaja, J. N., Mattaparty, S. H., Ismail, S., Varma, N. M. K., & Vaishnavi, P. (2024). Data-Driven Urban Safety: A CNN-Based Predictive Model for Manhole Hazard Detection. 2024 IEEE Students Conference on Engineering and Systems: Interdisciplinary Technologies for Sustainable Future, SCES 2024. doi:10.1109/SCES61914.2024.10652445.
Pang, D., Guan, Z., Luo, T., Su, W., & Dou, R. (2023). Real-time detection of road manhole covers with a deep learning model. Scientific Reports, 13(1), 16479–16479. doi:10.1038/s41598-023-43173-z.
Zhang, D., Yu, X., Yang, L., Quan, D., Mi, H., & Yan, K. (2023). Data-Augmented Deep Learning Models for Abnormal Road Manhole Cover Detection. Sensors, 23(5), 2676. doi:10.3390/s23052676.
Leni, E. S., Akey, S., Vaishnovi Mane, P. K., R, R. S., & Adere, K. (2025). Yolov8-Based Real-Time Pothole Detection System for Smart Cities: A Multi-Stage Optimization Approach. doi:10.2139/ssrn.5088949.
Zhang, H., Dong, Z., He, A., Zhang, A. A., Wang, K. C. P., Liu, Y., Xu, J., Shang, J., & Ai, C. (2022). Efficient approach to automated pavement manhole cover detection with modified faster R-CNN. Intelligent Transportation Infrastructure, 1, 1. doi:10.1093/iti/liac006.
Lin, G., Zhang, H., Xie, S., Luo, J., Li, Z., & Wang, Y. (2024). Research on Point Cloud Structure Detection of Manhole Cover Based on Structured Light Camera. Electronics, 13(7), 1226. doi:10.3390/electronics13071226.
Qing, L., Yang, K., Tan, W., & Li, J. (2020). Automated Detection of Manhole Covers in MLS Point Clouds Using a Deep Learning Approach. IEEE International Geoscience and Remote Sensing Symposium (IGARSS (2020)), 1580–1583. doi:10.1109/igarss39084.2020.9324137.
Khare, O., Gandhi, S., Rahalkar, A., & Mane, S. (2023). YOLOv8-Based Visual Detection of Road Hazards: Potholes, Sewer Covers, and Manholes. 2023 IEEE Pune Section International Conference (PuneCon), Pune, India, 1–6. doi:10.1109/punecon58714.2023.10449999.
Ma, L., Zhou, M., Wu, Q., Zhang, T., Zhang, H., & Cai, J. (2024). Research on Marker Recognition Method for Substation Engineering Progress Monitoring Based on Grounding DINO. 2024 The 9th International Conference on Power and Renewable Energy (ICPRE), 776–780. doi:10.1109/icpre62586.2024.10768306.
Cai, R., Guo, Z., Chen, X., Li, J., Tan, Y., & Tang, J. (2025). Automatic identification of integrated construction elements using open-set object detection based on image and text modality fusion. Advanced Engineering Informatics, 64, 103075. doi:10.1016/j.aei.2024.103075.
de Moraes Vestena, K., Phillipi Camboim, S., Brovelli, M. A., & Rodrigues dos Santos, D. (2024). Investigating the Performance of Open-Vocabulary Classification Algorithms for Pathway and Surface Material Detection in Urban Environments. ISPRS International Journal of Geo-Information, 13(12), 422. doi:10.3390/ijgi13120422.
Liu, S., Zeng, Z., Ren, T., Li, F., Zhang, H., Yang, J., Jiang, Q., Li, C., Yang, J., Su, H., Zhu, J., & Zhang, L. (2023). Grounding DINO: Marrying DINO with Grounded Pre-training for Open-Set Object Detection. Computer Vision – ECCV 2024, ECCV 2024, Lecture Notes in Computer Science, 15105, Springer, Cham, Switzerland. doi:10.1007/978-3-031-72970-6_3.
DOI: 10.28991/CEJ-2025-011-04-07
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Ibrahim Fouad Ahmed, Mohammed Alheyf, Ahmed Ali, Mohamed S. Yamany

This work is licensed under a Creative Commons Attribution 4.0 International License.