Manholes Detecting and Mapping Using Open-World Object Detection and GIS Integration

Ibrahim F. Ahmed, Mohammed Alheyf, Ahmed Ali, Mohamed S. Yamany

Abstract


Accurate detection and mapping of manholes are essential for urban infrastructure management, facilitating efficient maintenance and safety. This paper introduces a novel methodology that integrates the open-world object detection model, Grounding DINO, with geographic information systems (GIS) to detect and geolocate manholes in urban environments. Unlike traditional object detection approaches that rely on extensive labelled datasets and predefined object categories, Grounding DINO, a transformer-based model, leverages natural language processing for adaptable, scalable detection. Grounding DINO processes natural language descriptions to detect the manholes in an open-world context, overcoming the limitations of predefined object categories. Detected manholes are localized using multi-view triangulation, which refines their 3D positions by leveraging redundant camera viewpoints and intrinsic calibration parameters, which ensures accurate geometric mapping of manhole centers. The resulting geospatial coordinates are transformed into the WGS84 system using a global navigation satellite system/inertial navigation system (GNSS/INS) for compatibility with GIS platforms. The proposed approach achieved sub-meter precision, with mean localization errors of 0.36 meters in easting and 0.34 meters in northing, evaluated on KITTI dataset sequences under various urban conditions. The seamless integration of object detection and geospatial mapping demonstrates the potential of this approach for efficient and scalable urban infrastructure management.

 

Doi: 10.28991/CEJ-2025-011-04-07

Full Text: PDF


Keywords


Manhole Detection; Open-World Object Detection; Geographic Information Systems (GIS); Grounding DINO.

References


Rasheed, W. M., Abdulla, R., & San, L. Y. (2021). Manhole cover monitoring system over IOT. Journal of Applied Technology and Innovation, 5(3), 1-6.

Alshaiba, O., Núñez-Andrés, M. A., & Lantada, N. (2020). Automatic manhole extraction from MMS data to update basemaps. Automation in Construction, 113, 103110. doi:10.1016/j.autcon.2020.103110.

Oulahyane, A., & Kodad, M. (2024). Advancing Urban Infrastructure Safety: Modern Research in Deep Learning for Manhole Situation Supervision Through Drone Imaging and Geographic Information System Integration. International Journal of Advanced Computer Science and Applications, 15(7), 211–219. doi:10.14569/IJACSA.2024.0150721.

Vishnani, V., Adhya, A., Bajpai, C., Chimurkar, P., & Khandagle, K. (2020). Manhole Detection using Image Processing on Google Street View imagery. 2020 Third International Conference on Smart Systems and Inventive Technology (ICSSIT), 684–688. doi:10.1109/icssit48917.2020.9214219.

Wei, Z., Yang, M., Wang, L., Ma, H., Chen, X., & Zhong, R. (2019). Customized Mobile LiDAR System for Manhole Cover Detection and Identification. Sensors, 19(10), 2422. doi:10.3390/s19102422.

Boller, D., Moy de Vitry, M., D. Wegner, J., & Leitão, J. P. (2019). Automated localization of urban drainage infrastructure from public-access street-level images. Urban Water Journal, 16(7), 480–493. doi:10.1080/1573062X.2019.1687743.

Mishra, R., Patil, C., Kasture, S., Dhake, D. (2022). Manhole Quality Management and Sensing Using IOT. International Journal of Advanced Research in Science, Communication and Technology, 512–515. doi:10.48175/ijarsct-4533.

Wang, D., & Huang, Y. (2024). Manhole Cover Classification Based on Super-Resolution Reconstruction of Unmanned Aerial Vehicle Aerial Imagery. Applied Sciences (Switzerland), 14(7), 2769. doi:10.3390/app14072769.

Yang, L., Hao, Z., Hu, B., Shan, C., Wei, D., & He, D. (2024). Improved YOLOX-based detection of condition of road manhole covers. Frontiers in Built Environment, 10, 10. doi:10.3389/fbuil.2024.1337984.

M, A., S, K., & T, S. (2022). Smart Manhole Managing and Monitoring System using IoT. International Journal for Research in Applied Science and Engineering Technology, 11(12), 998–1001. doi:10.4108/eai.16-4-2022.2318149.

Xiao, Y., Li, S., Li, Z., & Qu, Z. (2023). Design of an Intelligent Manhole Cover System Based on BeiDou Navigation. 2023 13th International Conference on Information Technology in Medicine and Education (ITME), 505–509. doi:10.1109/itme60234.2023.00106.

Kumar, S. V. S., Padmaja, J. N., Mattaparty, S. H., Ismail, S., Varma, N. M. K., & Vaishnavi, P. (2024). Data-Driven Urban Safety: A CNN-Based Predictive Model for Manhole Hazard Detection. 2024 IEEE Students Conference on Engineering and Systems (SCES), 1–5. doi:10.1109/sces61914.2024.10652445.

Yadav, M., Lohani, B., & Goel, S. (2022). Geometric and radiometric constraints-based extraction of urban road manhole covers and their maintenance-related information using mobile laser scanning data. Geocarto International, 37(27), 16716–16735. doi:10.1080/10106049.2022.2115151.

Rajasekar, A., Aditya, J. J., Sundar, K. S., Suman, M., & Danush, S. (2024, April). Drain Block Detection and Controlling System. In 2024 International Conference on Communication, Computing and Internet of Things (IC3IoT), 1-4. doi:10.1109/IC3IoT60841.2024.10550345.

Liu, Y., Du, M., Jing, C., & Bai, Y. (2013). Design of supervision and management system for ownerless manhole covers based on RFID. 2013 21st International Conference on Geoinformatics, 1–4. doi:10.1109/geoinformatics.2013.6626149.

Commandre, B., En-Nejjary, D., Pibre, L., Chaumont, M., Delenne, C., & Chahinian, N. (2017). Manhole Cover Localization in Aerial Images with a Deep Learning Approach. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-1/W1, 333–338. doi:10.5194/isprs-archives-xlii-1-w1-333-2017.

Nan, T., Xiangyang, M., Lin, L., Liu, C., & Xiuhan, J. (2003). Manhole detection and location for urban pavement. Proceedings of the 2003 IEEE International Conference on Intelligent Transportation Systems, 2, 1552–1555. doi:10.1109/itsc.2003.1252744.

Moccardi, A. (2023). AI Driven Potholes Detection for Equitable Repair Prioritization: Human centred AI-driven methodology as support of road management system. Proceedings of the 2023 Conference on Human Centered Artificial Intelligence: Education and Practice, 56–56. doi:10.1145/3633083.3633224.

Kumar, S. V. S., Padmaja, J. N., Mattaparty, S. H., Ismail, S., Varma, N. M. K., & Vaishnavi, P. (2024). Data-Driven Urban Safety: A CNN-Based Predictive Model for Manhole Hazard Detection. 2024 IEEE Students Conference on Engineering and Systems: Interdisciplinary Technologies for Sustainable Future, SCES 2024. doi:10.1109/SCES61914.2024.10652445.

Pang, D., Guan, Z., Luo, T., Su, W., & Dou, R. (2023). Real-time detection of road manhole covers with a deep learning model. Scientific Reports, 13(1), 16479–16479. doi:10.1038/s41598-023-43173-z.

Zhang, D., Yu, X., Yang, L., Quan, D., Mi, H., & Yan, K. (2023). Data-Augmented Deep Learning Models for Abnormal Road Manhole Cover Detection. Sensors, 23(5), 2676. doi:10.3390/s23052676.

Leni, E. S., Akey, S., Vaishnovi Mane, P. K., R, R. S., & Adere, K. (2025). Yolov8-Based Real-Time Pothole Detection System for Smart Cities: A Multi-Stage Optimization Approach. doi:10.2139/ssrn.5088949.

Zhang, H., Dong, Z., He, A., Zhang, A. A., Wang, K. C. P., Liu, Y., Xu, J., Shang, J., & Ai, C. (2022). Efficient approach to automated pavement manhole cover detection with modified faster R-CNN. Intelligent Transportation Infrastructure, 1, 1. doi:10.1093/iti/liac006.

Lin, G., Zhang, H., Xie, S., Luo, J., Li, Z., & Wang, Y. (2024). Research on Point Cloud Structure Detection of Manhole Cover Based on Structured Light Camera. Electronics, 13(7), 1226. doi:10.3390/electronics13071226.

Qing, L., Yang, K., Tan, W., & Li, J. (2020). Automated Detection of Manhole Covers in MLS Point Clouds Using a Deep Learning Approach. IEEE International Geoscience and Remote Sensing Symposium (IGARSS (2020)), 1580–1583. doi:10.1109/igarss39084.2020.9324137.

Khare, O., Gandhi, S., Rahalkar, A., & Mane, S. (2023). YOLOv8-Based Visual Detection of Road Hazards: Potholes, Sewer Covers, and Manholes. 2023 IEEE Pune Section International Conference (PuneCon), Pune, India, 1–6. doi:10.1109/punecon58714.2023.10449999.

Ma, L., Zhou, M., Wu, Q., Zhang, T., Zhang, H., & Cai, J. (2024). Research on Marker Recognition Method for Substation Engineering Progress Monitoring Based on Grounding DINO. 2024 The 9th International Conference on Power and Renewable Energy (ICPRE), 776–780. doi:10.1109/icpre62586.2024.10768306.

Cai, R., Guo, Z., Chen, X., Li, J., Tan, Y., & Tang, J. (2025). Automatic identification of integrated construction elements using open-set object detection based on image and text modality fusion. Advanced Engineering Informatics, 64, 103075. doi:10.1016/j.aei.2024.103075.

de Moraes Vestena, K., Phillipi Camboim, S., Brovelli, M. A., & Rodrigues dos Santos, D. (2024). Investigating the Performance of Open-Vocabulary Classification Algorithms for Pathway and Surface Material Detection in Urban Environments. ISPRS International Journal of Geo-Information, 13(12), 422. doi:10.3390/ijgi13120422.

Liu, S., Zeng, Z., Ren, T., Li, F., Zhang, H., Yang, J., Jiang, Q., Li, C., Yang, J., Su, H., Zhu, J., & Zhang, L. (2023). Grounding DINO: Marrying DINO with Grounded Pre-training for Open-Set Object Detection. Computer Vision – ECCV 2024, ECCV 2024, Lecture Notes in Computer Science, 15105, Springer, Cham, Switzerland. doi:10.1007/978-3-031-72970-6_3.


Full Text: PDF

DOI: 10.28991/CEJ-2025-011-04-07

Refbacks

  • There are currently no refbacks.




Copyright (c) 2025 Ibrahim Fouad Ahmed, Mohammed Alheyf, Ahmed Ali, Mohamed S. Yamany

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message