A Novel Process for Decolmatation of Wells During In Situ Leach Mining of Uranium

Khalidilla Yussupov, Gulfarizada Abdissattar, Erbolat Aben, Sayfulmalik Myrzakhmetov, Dalelkhan Akhmetkanov, Erbol Yelzhanov

Abstract


The objective of this research is to enhance the efficiency of geotechnical wells by using a low-toxicity ammonium fluoride substance in neutral, acidic, and alkaline environments to dissolve colmatants. The research methodology includes X-ray spectral analysis, semi-quantitative X-ray phase analysis of the colmatants, laboratory experiments, and pilot-scale tests. The study results indicate that the use of ammonium fluoride combined with soda increases the dissolution of colmatants, particularly quartz, thereby improving the flow rate and extending the inter-repair cycle of process wells. When ammonium fluoride is used with sulfuric acid, it leads to a decrease in the oxidation-reduction potential (ORP), whereas its combination with soda ash increases the ORP, both of which positively affect the efficiency of in situ leaching technology for uranium mining. The practical significance and novelty of this work lie in the development of an effective and environmentally friendly decolmatation technology using a low-toxicity reagent—ammonium fluoride in combination with soda. For the first time, this research established the dependence of the degree of quartz colmatant dissolution on the concentration of ammonium fluoride in both acidic and alkaline environments, along with observed changes in ORP and pH values over time during treatment with alkaline and acidic solutions of ammonium fluoride.

 

Doi: 10.28991/CEJ-2025-011-04-011

Full Text: PDF


Keywords


Colmatation; Repair-And-Renewal Operations; Chemical Treatment; Filter; Near-Filter Zone; Leaching; Ammonium Fluoride.

References


Li, G., & Yao, J. (2024). A Review of In Situ Leaching (ISL) for Uranium Mining. Mining, 4(1), 120–148. doi:10.3390/mining4010009.

Cuney, M., Mercadier, J., & Bonnetti, C. (2022). Classification of Sandstone-Related Uranium Deposits. Journal of Earth Science, 33(2), 236–256. doi:10.1007/s12583-021-1532-x.

IAEA. (2023). Annual Report: International Atomic Energy Agency (IAEA), Vienna, Austria. Available online: https://www.iaea.org/publications/reports/annual-report/2023 (accessed on March 2025).

Togizov, K., Kenzhetaev, Z., Temirkhanova, R., Muzapparova, A., Omirgali, A., & Altaibayev, B. (2024). The Influence of the Physicochemical Characteristics of Ores on the Efficiency of Underground Well Leaching of Uranium Deposits in Kazakhstan. Minerals, 14(4), 381. doi:10.3390/min14040381.

Kurmanseiit, M. B., Tungatarova, M. S., Abdullayeva, B. Z., Aizhulov, D. Y., & Shayakhmetov, N. M. (2024). Acceleration of Numerical Modeling of Uranium in Situ Leaching: Application of IDW Interpolation and Neural Networks for Solving the Hydraulic Head Equation. Minerals, 14(10), 1043. doi:10.3390/min14101043.

Ligotskiy, D. N., & Argimbaeva, K. V. (2024). The sectional formation technology of an anthropogenic deposit with its subsequent mining using a hydraulic pull shovel. Sustainable Development of Mountain Territories, 16(1), 111–121. doi:10.21177/1998-4502-2024-16-1-111-121.

Ligotsky, D. N., & Argimbaeva, K. V. (2023). Effect of grain size distribution of tailings during the formation of technogenic deposit on the fragmentation index. Sustainable Development of Mountain Territories, 15(2), 275–282. doi:10.21177/1998-4502-2023-15-2-275-282.

Savov, G. (2024). In situ technology for copper and uranium recovery. Current state of art. Ninth National Scientific and Technical Conference with International Participation “Technologies and Practices in Underground Mining and Mine construction”, 7-10 October, 2024, Devin, Bulgaria.

Rakishev, B. R., Mataev, M. M., Kenzhetaev, Z. S., & Shampikova, A. Kh. (2022). Innovative Methods of Intensification in Situ Leaching Of Uranium in Deposits with Low Filtration Characteristics of Ores. Series of Geology and Technical Sciences, 5(455), 188–206. doi:10.32014/2518-170x.226.

Kenzhetaev1, Z. S., Kuandykov, T. A., Togizov, K. S., Abdraimova, M. R., & Nurbekova, М. A. (2022). Selection Of Rational Parameters For Opening And Drilling Of Technological Wells Underground Uranium Leaching. Series of Geology and Technical Sciences, 3(453), 115–127. doi:10.32014/2022.2518-170x.184.

Alimbaev, T., Mazhitova, Z., Beksultanova, C., & Tentigulkyzy, N. (2020). Activities of mining and metallurgical industry enterprises of the Republic of Kazakhstan: Environmental problems and possible solutions. E3S Web of Conferences, 175, 14019. doi:10.1051/e3sconf/202017514019.

Tsoy, B. V., Myrzakhmetov, S. S., Bekbotaeva, A. A., & Yusupov, K. A. (2022). New geophysical logging techniques for practical problem solving at complex hydrogenetic uranium deposits. Gornyi Zhurnal, 2022(7), 27–31. doi:10.17580/gzh.2022.07.04.

Wang, Y., Song, M., Wei, J., You, J., Chen, S., Wang, S., & Wang, Y. (2023). Strengthening Fe(II)/Fe(III) Dynamic Cycling by Surface Sulfation to Achieve Efficient Electrochemical Uranium Extraction at Ultralow Cell Voltage. Environmental Science & Technology, 57(35), 13258–13266. doi:10.1021/acs.est.3c05133.

Kaksonen, A. H., Lakaniemi, A. M., & Tuovinen, O. H. (2020). Acid and ferric sulfate bioleaching of uranium ores: A review. Journal of Cleaner Production, 264, 121586. doi:10.1016/j.jclepro.2020.121586.

Zhao, Y., Gao, Y., Luo, C., & Liu, J. (2022). Improved uranium leaching efficiency from low-permeability sandstone using low-frequency vibration in the CO2+O2 leaching process. Journal of Rock Mechanics and Geotechnical Engineering, 14(3), 770–780. doi:10.1016/j.jrmge.2021.10.013.

Li, J., Feng, J., Xue, J., Huang, Y., Zhang, Z., Li, H., Chen, Y., Guo, J., Su, X., & Hua, R. (2024). The influence of surfactants on the acid leaching process of a uranium mine in Inner Mongolia. Journal of Radioanalytical and Nuclear Chemistry, 333, 5845–5855. doi:10.1007/s10967-024-09697-y.

Toktaruly, B., Bayeshov, A., Aben, Y., & Suleimenov, S. K. (2022). Effect of Process Solution Saturation with Oxygen on Uranium in-Situ Leaching Performance. Eurasian Mining, 38(2), 50–53. doi:10.17580/em.2022.02.12.

Yussupov, K., Aben, E., Akhmetkanov, D., Aben, K., & Yussupova, S. (2023). Investigation of the solid oxidizer effect on the metal geotechnology efficiency. Mining of Mineral Deposits, 17(4), 12–17. doi:10.33271/mining17.04.012.

Bashilova, E. S., & Baibatsha, A. B. (2022). Geological and geotechnical specifics of uranium production at hydrogenetic deposit Semizbay. Gornyi Zhurnal, 2022(7), 61–66. doi:10.17580/gzh.2022.07.10.

Nicol, M., Ye, K., & Garrard, N. (2025). The combined leaching of copper, gold and uranium in chloride solutions. II. Concentrate leach tests. Hydrometallurgy, 231, 106407. doi:10.1016/j.hydromet.2024.106407.

Alikulov, Sh. Sh., Rabimov, Kh. R., Khalimov, I. U., & Karimov, N. M. (2022). Research and Development of Measures to Prevent Mechanical Colmation of the Form during in-Situ Leaching of Uranium. Gorniy Vestnik Uzbekistana, 2(2(89)). doi:10.54073/gv.2022.2.89.008. (In Russian).

Yusupov, Kh. A., & Omarbekov, E. U. (2020). The effect of “pumping wells” procedure on the flow rate of extraction wells. Complex Use of Mineral Resources, 313(2), 14–18. doi:10.31643/2020/6445.12.

Rakishev, B. R., Mataev, M. M., Kenzhetaev, Zh. S., Togizov, K. S., & Shampikova, A. Kh. (2022). Innovative Methods for Restoring Filtration Characteristics of Borehole Uranium Ores in Kazakhstan’s Fields. Series of Geology and Technical Sciences, 4(454), 171–181. doi:10.32014/2022.2518-170x.208.

Cheremisina, O. V., Vasiliev, R. E., Netrusov, A. O., & Ter-Oganesyants, A. K. (2024). Hot Curing and Lime Boiling of High-Arsenic Copper Concentrate Pressure Oxidation Product and Their Effect on Precious Metals Recovery During Subsequent Cyanidation. Tsvetnye Metally, 2024(2), 19–26. doi:10.17580/tsm.2024.02.02.

Cheremisina, O., Vasiliev, R., & Fedorov, A. (2025). Effect of Potassium Salt Addition on Silver Precipitation during Hydrothermal Synthesis of Argentojarosites. Metals, 15(1), 24. doi:10.3390/met15010024.

Aben, E., Yussupova, S., Akhmetkanov, D., Yelzhanov, E., & Sarybayev, N. (2024). Research into Uranium Characteristics and Content in a Pregnant Solution during Leaching with Oxygen Saturation. Civil Engineering Journal (Iran), 10(5), 1606–1615. doi:10.28991/CEJ-2024-010-05-016.

Li, L., Lv, J., Liu, W., Ma, Q., & Tan, W. (2024). Study on uranium leaching from uranium purification residue with ammonium hydrogen fluoride. Journal of Environmental Radioactivity, 276, 107441. doi:10.1016/j.jenvrad.2024.107441.

Silva, R., Couto, D., Tavares, A., & Guimarães, L. (2021). Enhanced process route to remove fluorine and uranium from copper concentrades by selective sulfuric acid leaching. Minerals Engineering, 170, 107039. doi:10.1016/j.mineng.2021.107039.

Kenzhetaev, Zh. S., Togizov, K. S., Omirgali, A. K., Aben, E. Kh., & Zhalikyzy, R. (2023). Intensification of Inhibitor-Assisted Uranium ISL Process. Series of Geology and Technical Sciences, 3(459), 108–118. doi:10.32014/2023.2518-170x.303.


Full Text: PDF

DOI: 10.28991/CEJ-2025-011-04-011

Refbacks

  • There are currently no refbacks.




Copyright (c) 2025 Khalidilla Yussupov, Gulfarizada Abdissattar, Erbolat Aben, Sayfulmalik Myrzakhmetov, Dalelkhan Akhmetkanov, Erbol Yelzhanov

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message