Assessing the Effects of Freeze-Thaw Cycles and Traffic Load on Pavement Resilience
Abstract
Doi: 10.28991/CEJ-2025-011-04-024
Full Text: PDF
Keywords
References
Lu, F., & Si, W. (2024). Reliability risk modelling of asphalt pavement structure performance under the impact of freeze-thaw cycles. Case Studies in Construction Materials, 20. doi:10.1016/j.cscm.2024.e03054.
Fan, Z., Xu, H., Xiao, J., & Tan, Y. (2020). Effects of freeze-thaw cycles on fatigue performance of asphalt mixture and development of fatigue-freeze-thaw (FFT) uniform equation. Construction and Building Materials, 242, 138427. doi:10.1016/j.conbuildmat.2020.118043.
Charhi, O. B., & Baba, K. (2024). Influence of Temperature on the Viscoelastic Behavior and Durability of Flexible Pavements. Civil Engineering Journal, 10(7), 2162-2176. doi:10.28991/CEJ-2024-010-07-06.
Khlifati, O., & Baba, K. (2023). Road Distress Detection and Classification: Harnessing the Synergy of Deep Learning and Transfer Learning Approaches. Springer Proceedings in Earth and Environmental Sciences, Part F1971, 346–355. doi:10.1007/978-3-031-49345-4_33.
Khlifati, O., Baba, K., & Tayeh, B. A. (2024). Survey of automated crack detection methods for asphalt and concrete structures. Innovative Infrastructure Solutions, 9(11), 438. doi:10.1007/s41062-024-01733-w.
Bencharhi, O., & Baba, K. (2023). A New Approach for Reinforcing the Pavement Subjected to Solicitations and Admissible Deformations. NanoWorld Journal, 9, 107– 114. doi:10.17756/nwj.2023-s2-019.
Khlifati, O., & Baba, K. (2023). Concrete Pavement Crack Detection and Classification Using Deep Convolutional Neural Network with Grid Search Optimization. NanoWorld Journal, 9, 472– 477. doi:10.17756/nwj.2023-s2-080.
Sivaprakash, G., & Ajithkumar, P. (2024). Influence of Filler Materials on Bituminous Mastic Rheology at High Temperatures. Civil Engineering Journal, 10(2), 534-545. doi:10.28991/CEJ-2024-010-02-013.
Bashir, M. T., Khan, A. B., Khan, M. M. H., Rasheed, K., Saad, S., & Farid, F. (2024). Evaluating the implementation of green building materials in the construction sector of developing nations. Journal of Human, Earth, and Future, 5(3), 528-542. doi:10.28991/HEF-2024-05-03-015.
Luo, S., Bai, T., Guo, M., Wei, Y., & Ma, W. (2022). Impact of Freeze–Thaw Cycles on the Long-Term Performance of Concrete Pavement and Related Improvement Measures: A Review. Materials, 15(13), 4568. doi:10.3390/ma15134568.
Zhang, M., Xiong, Z., Gong, M., Hong, J., Qiao, H., Zhang, Y., & jiang, L. (2024). Multi-scale damage characterisation of semi-flexible pavements under freeze-thaw cycles. Construction and Building Materials, 445, 137847. doi:10.1016/j.conbuildmat.2024.137847.
Wu, C., Zhu, X., & Si, W. (2023). Sensitivity analysis of asphalt pavement performance under freeze-thaw cycles by applying reliability method. Case Studies in Construction Materials, 19, 2656. doi:10.1016/j.cscm.2023.e02656.
Xu, L., Wang, F., Yu, H., Li, H., Zhao, J., & Pei, J. (2025). Freeze-thaw damage characteristics and discrete element simulation analysis of composite fibers asphalt mixture. Construction and Building Materials, 472, 140918. doi:10.1016/j.conbuildmat.2025.140918.
Charhi, O. Ben, & Baba, K. (2023). Modeling the Fatigue Behavior of Pavement Using the Finite Element Method. Springer Proceedings in Earth and Environmental Sciences, Part F1971, 368–379. doi:10.1007/978-3-031-49345-4_35.
Charhi, O. Ben, & Baba, K. (2024). Influence of Temperature on the Viscoelastic Behavior and Durability of Flexible Pavements. Civil Engineering Journal (Iran), 10(7), 2162–2176. doi:10.28991/CEJ-2024-010-07-06.
Yin, H. M. (2010). Opening-mode cracking in asphalt pavements: Crack initiation and saturation. Road materials and pavement design, 11(2), 435-457. doi:10.1080/14680629.2010.9690283.
Pan, Y., Han, D., Yang, T., Tang, D., Huang, Y., Tang, N., & Zhao, Y. (2021). Field observations and laboratory evaluations of asphalt pavement maintenance using hot in-place recycling. Construction and Building Materials, 271, 121864. doi:10.1016/j.conbuildmat.2020.121864.
Gkyrtis, K., Armeni, A., Plati, C., & Loizos, A. (2021). Structural performance assessment of airfield concrete pavements based on field and laboratory data. Infrastructures, 6(12), 173. doi:10.3390/infrastructures6120173.
Agrela, F., Díaz-López, J. L., Rosales, J., Cuenca-Moyano, G. M., Cano, H., & Cabrera, M. (2021). Environmental assessment, mechanical behavior and new leaching impact proposal of mixed recycled aggregates to be used in road construction. Journal of Cleaner Production, 280, 124362. doi:10.1016/j.jclepro.2020.124362.
Wang, L., Yao, Y., Li, J., Tao, Y., & Liu, K. (2022). Review of Visualization Technique and Its Application of Road Aggregates Based on Morphological Features. Applied Sciences (Switzerland), 12(20), 10571. doi:10.3390/app122010571.
Salem, M. E., El-Badawy, S. M., Xiao, F., & Awed, A. M. (2024). Influence of field aging on viscoelastoplastic performance of rubberized asphalt mixtures incorporating reclaimed asphalt pavement in arid urban climate. Construction and Building Materials, 449, 138390. doi:10.1016/j.conbuildmat.2024.138390.
Qiao, Y., Dawson, A. R., Parry, T., Flintsch, G., & Wang, W. (2020). Flexible pavements and climate change: A comprehensive review and implicatio. Sustainability (Switzerland), 12(3), 1057. doi:10.3390/su12031057.
Bhandari, S., Luo, X., & Wang, F. (2023). Understanding the effects of structural factors and traffic loading on flexible pavement performance. International Journal of Transportation Science and Technology, 12(1), 258–272. doi:10.1016/j.ijtst.2022.02.004.
Llopis-Castelló, D., García-Segura, T., Montalbán-Domingo, L., Sanz-Benlloch, A., & Pellicer, E. (2020). Influence of pavement structure, traffic, and weather on urban flexible pavement deterioration. Sustainability (Switzerland), 12(22), 1–20. doi:10.3390/su12229717.
Deng, Q., Liu, X., Zeng, C., He, X., Chen, F., & Zhang, S. (2021). A freezing-thawing damage characterization method for highway subgrade in seasonally frozen regions based on thermal-hydraulic-mechanical coupling model. Sensors, 21(18), 6251. doi:10.3390/s21186251.
Yu, D., Jing, H., & Liu, J. (2022). Effects of Freeze–Thaw Cycles on the Internal Voids Structure of Asphalt Mixtures. Materials, 15(10), 3560. doi:10.3390/ma15103560.
Alam, M. R., Hossain, K., & Bazan, C. (2020). A systematic approach to estimate global warming potential from pavement vehicle interaction using Canadian Long-Term Pavement Performance data. Journal of Cleaner Production, 273, 123106. doi:10.1016/j.jclepro.2020.123106.
Komaragiri, S., Filonzi, A., Masad, A., Hazlett, D., Mahmoud, E., & Bhasin, A. (2022). Using the dynamic shear rheometer for low-temperature grading of asphalt binders. Journal of Testing and Evaluation, 50(3), 1622–1633. doi:10.1520/JTE20210277.
Levenberg, E., Hesthaven, M., & Andersen, S. (2024). Mechanistic Code for Asphalt Pavements Loaded by Farming Vehicles. Transportation Research Record, 2678(2), 469–480. doi:10.1177/03611981231175154.
Daoudi, A., Perraton, D., Dony, A., & Carter, A. (2020). From complex modulus E* to creep compliance D(t): Experimental and modeling study. Materials, 13(8), 1945. doi:10.3390/MA13081945.
Wang, H., Zhao, J., Hu, X., & Zhang, X. (2020). Flexible Pavement Response Analysis under Dynamic Loading at Different Vehicle Speeds and Pavement Surface Roughness Conditions. Journal of Transportation Engineering, Part B: Pavements, 146(3), 04020040. doi:10.1061/jpeodx.0000198.
Liu, Z., Gu, X., Ren, H., Zhou, Z., Wang, X., & Tang, S. (2022). Analysis of the dynamic responses of asphalt pavement based on full-scale accelerated testing and finite element simulation. Construction and Building Materials, 325, 126429. doi:10.1016/j.conbuildmat.2022.126429.
Fan, Z., Xu, H., Xiao, J., & Tan, Y. (2020). Effects of freeze-thaw cycles on fatigue performance of asphalt mixture and development of fatigue-freeze-thaw (FFT) uniform equation. Construction and Building Materials, 242, 118043. doi:10.1016/j.conbuildmat.2020.118043.
Sanfilippo, D., Garcia-Hernández, A., Alexiadis, A., & Ghiassi, B. (2022). Effect of freeze–thaw cycles on the void topologies and mechanical properties of asphalt. Construction and Building Materials, 344, 128085. doi:10.1016/j.conbuildmat.2022.128085.
DOI: 10.28991/CEJ-2025-011-04-024
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 OMAR BENCHARHI

This work is licensed under a Creative Commons Attribution 4.0 International License.