Assessing the Effects of Freeze-Thaw Cycles and Traffic Load on Pavement Resilience

Omar Ben Charhi, Khadija Baba, Latifa Ouadif

Abstract


This study examines the impact of freeze-thaw cycles on the performance of flexible pavements, focusing on a specific road in Morocco. The primary objectives are assessing pavement resilience under varying climatic conditions and investigating the combined effects of freeze-thaw cycles, traffic speed (ranging from V1 to V4), and temperature fluctuations (from T1 min to T2 max) on pavement durability and structural integrity. The methodology involves comprehensive data collection on traffic loads, local climate conditions, and soil characteristics. These data inform the pavement design process, helping determine the optimal thickness and selection of materials to withstand environmental stresses. The study also examines the effects of freeze-thaw cycles, assessing frost-resistant materials and comparing frost indices to enhance durability. Advanced modeling techniques simulate pavement performance under real-world conditions, optimizing resilience. The methodology investigates the interaction between traffic speed and pavement behavior, focusing on strain (εz), displacement (Uz), and stress (σz). The findings reveal a significant correlation between freeze-thaw cycles and pavement deterioration, with strain and displacement increasing as traffic speed decreases while stress intensifies with higher traffic speeds. This research provides valuable insights into the effects of traffic speed on flexible pavements, contributing to more effective maintenance strategies and design solutions for durable, weather-resilient roadways.

 

Doi: 10.28991/CEJ-2025-011-04-024

Full Text: PDF


Keywords


Freeze-Thaw Cycles; Flexible Pavement; Traffic Speed; Temperature Fluctuations; Pavement Durability.

References


Lu, F., & Si, W. (2024). Reliability risk modelling of asphalt pavement structure performance under the impact of freeze-thaw cycles. Case Studies in Construction Materials, 20. doi:10.1016/j.cscm.2024.e03054.

Fan, Z., Xu, H., Xiao, J., & Tan, Y. (2020). Effects of freeze-thaw cycles on fatigue performance of asphalt mixture and development of fatigue-freeze-thaw (FFT) uniform equation. Construction and Building Materials, 242, 138427. doi:10.1016/j.conbuildmat.2020.118043.

Charhi, O. B., & Baba, K. (2024). Influence of Temperature on the Viscoelastic Behavior and Durability of Flexible Pavements. Civil Engineering Journal, 10(7), 2162-2176. doi:10.28991/CEJ-2024-010-07-06.

Khlifati, O., & Baba, K. (2023). Road Distress Detection and Classification: Harnessing the Synergy of Deep Learning and Transfer Learning Approaches. Springer Proceedings in Earth and Environmental Sciences, Part F1971, 346–355. doi:10.1007/978-3-031-49345-4_33.

Khlifati, O., Baba, K., & Tayeh, B. A. (2024). Survey of automated crack detection methods for asphalt and concrete structures. Innovative Infrastructure Solutions, 9(11), 438. doi:10.1007/s41062-024-01733-w.

Bencharhi, O., & Baba, K. (2023). A New Approach for Reinforcing the Pavement Subjected to Solicitations and Admissible Deformations. NanoWorld Journal, 9, 107– 114. doi:10.17756/nwj.2023-s2-019.

Khlifati, O., & Baba, K. (2023). Concrete Pavement Crack Detection and Classification Using Deep Convolutional Neural Network with Grid Search Optimization. NanoWorld Journal, 9, 472– 477. doi:10.17756/nwj.2023-s2-080.

Sivaprakash, G., & Ajithkumar, P. (2024). Influence of Filler Materials on Bituminous Mastic Rheology at High Temperatures. Civil Engineering Journal, 10(2), 534-545. doi:10.28991/CEJ-2024-010-02-013.

Bashir, M. T., Khan, A. B., Khan, M. M. H., Rasheed, K., Saad, S., & Farid, F. (2024). Evaluating the implementation of green building materials in the construction sector of developing nations. Journal of Human, Earth, and Future, 5(3), 528-542. doi:10.28991/HEF-2024-05-03-015.

Luo, S., Bai, T., Guo, M., Wei, Y., & Ma, W. (2022). Impact of Freeze–Thaw Cycles on the Long-Term Performance of Concrete Pavement and Related Improvement Measures: A Review. Materials, 15(13), 4568. doi:10.3390/ma15134568.

Zhang, M., Xiong, Z., Gong, M., Hong, J., Qiao, H., Zhang, Y., & jiang, L. (2024). Multi-scale damage characterisation of semi-flexible pavements under freeze-thaw cycles. Construction and Building Materials, 445, 137847. doi:10.1016/j.conbuildmat.2024.137847.

Wu, C., Zhu, X., & Si, W. (2023). Sensitivity analysis of asphalt pavement performance under freeze-thaw cycles by applying reliability method. Case Studies in Construction Materials, 19, 2656. doi:10.1016/j.cscm.2023.e02656.

Xu, L., Wang, F., Yu, H., Li, H., Zhao, J., & Pei, J. (2025). Freeze-thaw damage characteristics and discrete element simulation analysis of composite fibers asphalt mixture. Construction and Building Materials, 472, 140918. doi:10.1016/j.conbuildmat.2025.140918.

Charhi, O. Ben, & Baba, K. (2023). Modeling the Fatigue Behavior of Pavement Using the Finite Element Method. Springer Proceedings in Earth and Environmental Sciences, Part F1971, 368–379. doi:10.1007/978-3-031-49345-4_35.

Charhi, O. Ben, & Baba, K. (2024). Influence of Temperature on the Viscoelastic Behavior and Durability of Flexible Pavements. Civil Engineering Journal (Iran), 10(7), 2162–2176. doi:10.28991/CEJ-2024-010-07-06.

Yin, H. M. (2010). Opening-mode cracking in asphalt pavements: Crack initiation and saturation. Road materials and pavement design, 11(2), 435-457. doi:10.1080/14680629.2010.9690283.

Pan, Y., Han, D., Yang, T., Tang, D., Huang, Y., Tang, N., & Zhao, Y. (2021). Field observations and laboratory evaluations of asphalt pavement maintenance using hot in-place recycling. Construction and Building Materials, 271, 121864. doi:10.1016/j.conbuildmat.2020.121864.

Gkyrtis, K., Armeni, A., Plati, C., & Loizos, A. (2021). Structural performance assessment of airfield concrete pavements based on field and laboratory data. Infrastructures, 6(12), 173. doi:10.3390/infrastructures6120173.

Agrela, F., Díaz-López, J. L., Rosales, J., Cuenca-Moyano, G. M., Cano, H., & Cabrera, M. (2021). Environmental assessment, mechanical behavior and new leaching impact proposal of mixed recycled aggregates to be used in road construction. Journal of Cleaner Production, 280, 124362. doi:10.1016/j.jclepro.2020.124362.

Wang, L., Yao, Y., Li, J., Tao, Y., & Liu, K. (2022). Review of Visualization Technique and Its Application of Road Aggregates Based on Morphological Features. Applied Sciences (Switzerland), 12(20), 10571. doi:10.3390/app122010571.

Salem, M. E., El-Badawy, S. M., Xiao, F., & Awed, A. M. (2024). Influence of field aging on viscoelastoplastic performance of rubberized asphalt mixtures incorporating reclaimed asphalt pavement in arid urban climate. Construction and Building Materials, 449, 138390. doi:10.1016/j.conbuildmat.2024.138390.

Qiao, Y., Dawson, A. R., Parry, T., Flintsch, G., & Wang, W. (2020). Flexible pavements and climate change: A comprehensive review and implicatio. Sustainability (Switzerland), 12(3), 1057. doi:10.3390/su12031057.

Bhandari, S., Luo, X., & Wang, F. (2023). Understanding the effects of structural factors and traffic loading on flexible pavement performance. International Journal of Transportation Science and Technology, 12(1), 258–272. doi:10.1016/j.ijtst.2022.02.004.

Llopis-Castelló, D., García-Segura, T., Montalbán-Domingo, L., Sanz-Benlloch, A., & Pellicer, E. (2020). Influence of pavement structure, traffic, and weather on urban flexible pavement deterioration. Sustainability (Switzerland), 12(22), 1–20. doi:10.3390/su12229717.

Deng, Q., Liu, X., Zeng, C., He, X., Chen, F., & Zhang, S. (2021). A freezing-thawing damage characterization method for highway subgrade in seasonally frozen regions based on thermal-hydraulic-mechanical coupling model. Sensors, 21(18), 6251. doi:10.3390/s21186251.

Yu, D., Jing, H., & Liu, J. (2022). Effects of Freeze–Thaw Cycles on the Internal Voids Structure of Asphalt Mixtures. Materials, 15(10), 3560. doi:10.3390/ma15103560.

Alam, M. R., Hossain, K., & Bazan, C. (2020). A systematic approach to estimate global warming potential from pavement vehicle interaction using Canadian Long-Term Pavement Performance data. Journal of Cleaner Production, 273, 123106. doi:10.1016/j.jclepro.2020.123106.

Komaragiri, S., Filonzi, A., Masad, A., Hazlett, D., Mahmoud, E., & Bhasin, A. (2022). Using the dynamic shear rheometer for low-temperature grading of asphalt binders. Journal of Testing and Evaluation, 50(3), 1622–1633. doi:10.1520/JTE20210277.

Levenberg, E., Hesthaven, M., & Andersen, S. (2024). Mechanistic Code for Asphalt Pavements Loaded by Farming Vehicles. Transportation Research Record, 2678(2), 469–480. doi:10.1177/03611981231175154.

Daoudi, A., Perraton, D., Dony, A., & Carter, A. (2020). From complex modulus E* to creep compliance D(t): Experimental and modeling study. Materials, 13(8), 1945. doi:10.3390/MA13081945.

Wang, H., Zhao, J., Hu, X., & Zhang, X. (2020). Flexible Pavement Response Analysis under Dynamic Loading at Different Vehicle Speeds and Pavement Surface Roughness Conditions. Journal of Transportation Engineering, Part B: Pavements, 146(3), 04020040. doi:10.1061/jpeodx.0000198.

Liu, Z., Gu, X., Ren, H., Zhou, Z., Wang, X., & Tang, S. (2022). Analysis of the dynamic responses of asphalt pavement based on full-scale accelerated testing and finite element simulation. Construction and Building Materials, 325, 126429. doi:10.1016/j.conbuildmat.2022.126429.

Fan, Z., Xu, H., Xiao, J., & Tan, Y. (2020). Effects of freeze-thaw cycles on fatigue performance of asphalt mixture and development of fatigue-freeze-thaw (FFT) uniform equation. Construction and Building Materials, 242, 118043. doi:10.1016/j.conbuildmat.2020.118043.

Sanfilippo, D., Garcia-Hernández, A., Alexiadis, A., & Ghiassi, B. (2022). Effect of freeze–thaw cycles on the void topologies and mechanical properties of asphalt. Construction and Building Materials, 344, 128085. doi:10.1016/j.conbuildmat.2022.128085.


Full Text: PDF

DOI: 10.28991/CEJ-2025-011-04-024

Refbacks

  • There are currently no refbacks.




Copyright (c) 2025 OMAR BENCHARHI

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message