Advanced Reclaimed Asphalt Pavement Treatment for Sustainable Pervious Concrete: Optimizing Strength, Hydraulic Performance and Long-Term Durability

Gyanen Takhelmayum, Konsam Rambha Devi

Abstract


The increasing depletion of natural aggregates and escalating construction waste necessitate the implementation of environmentally friendly substitutes in concrete production. This study explores the incorporation of treated Reclaimed Asphalt Pavement (RAP) as an eco-efficient alternative to traditional coarse aggregates in pervious concrete (PC) matrices by evaluating its structural integrity, permeability, durability, and microstructural characteristics. A comprehensive multi-stage treatment process involving solar heating, natural oxidation, and mechanical roughening was employed to enhance aggregate bonding and bitumen reduction. The treatment of RAP was conducted for three treatment durations: 0-month, 12 months, and 24 months. Coarse aggregates were substituted with 0%, 25%, 50%, 75%, and 100% RAP by weight, and all mixtures were cured for 90 days. The investigation focused on evaluating essential functional characteristics, including density, porosity, hydraulic conductivity, compressive and flexural responses, as well as durability under abrasion and chemical exposure to sulphate and chloride environments. Microstructural analysis utilizing Energy Dispersive X-ray Analysis (EDAX) demonstrated a substantial reduction in bitumen content, as evidenced by a declining carbon peak with increased treatment duration. Additionally, Scanning Electron Microscopy (SEM) micrographs revealed fewer voids, increased C-S-H formation, and improved bonding, with minor Interfacial Transition Zone (ITZ) variations across 12-month and 24-month treatments. The findings highlight that extended RAP treatment significantly improves density, reduces porosity, enhances compressive and flexural strength, and lowers permeability. Furthermore, 24-month treated RAP demonstrated superior durability, exhibiting enhanced abrasion and chemical resistance due to improved aggregate cohesion and matrix integration. This study establishes that pervious concrete with more than 50% RAP content, previously considered unviable, is structurally feasible when suitable treatment and gradation techniques are used, thereby advancing sustainable construction materials.

 

Doi: 10.28991/CEJ-2025-011-04-019

Full Text: PDF


Keywords


Reclaimed Asphalt Pavement (RAP); Pervious Concrete; Compressive Strength; Flexural Strength; Permeability; Durability; Microstructural Analysis.

References


Chandrappa, A. K., & Biligiri, K. P. (2016). Pervious concrete as a sustainable pavement material-Research findings and future prospects: A state-of-the-art review. Construction and Building Materials, 111, 262–274. doi:10.1016/j.conbuildmat.2016.02.054.

Abraham, S. M., & Ransinchung, G. D. R. N. (2018). Influence of RAP aggregates on strength, durability and porosity of cement mortar. Construction and Building Materials, 189, 1105–1112. doi:10.1016/j.conbuildmat.2018.09.069.

Debbarma, S., Selvam, M., & Singh, S. (2020). Can flexible pavements’ waste (RAP) be utilized in cement concrete pavements? – A critical review. Construction and Building Materials, 259, 120417. doi:10.1016/j.conbuildmat.2020.120417.

Singh, S., Ransinchung, G. D., & Kumar, P. (2017). An economical processing technique to improve RAP inclusive concrete properties. Construction and Building Materials, 148, 734–747. doi:10.1016/j.conbuildmat.2017.05.030.

Singh, S., Ransinchung, G. D. R. N., & Kumar, P. (2019). Feasibility study of RAP aggregates in cement concrete pavements. Road Materials and Pavement Design, 20(1), 151–170. doi:10.1080/14680629.2017.1380071.

Aprianti, E. (2017). A huge number of artificial waste material can be supplementary cementitious material (SCM) for concrete production–a review part II. Journal of cleaner production, 142, 4178-4194. doi:10.1016/j.jclepro.2015.12.115.

Khankhaje, E., Rafieizonooz, M., Salim, M. R., Khan, R., Mirza, J., Siong, H. C., & Salmiati. (2018). Sustainable clean pervious concrete pavement production incorporating palm oil fuel ash as cement replacement. Journal of Cleaner Production, 172, 1476–1485. doi:10.1016/j.jclepro.2017.10.159.

RGA Concrete Contractors. (2025). Sustainable Concrete Innovations in 2025: The Future of Eco-Friendly Construction. RGA Concrete Contractors LLC, Texas, Unites States. Available online: https://rgaconcretellc.com/ (accessed on March 2025).

Jessup, K., Parker, S. S., Randall, J. M., Cohen, B. S., Roderick-Jones, R., Ganguly, S., & Sourial, J. (2021). Planting Stormwater Solutions: A methodology for siting nature-based solutions for pollution capture, habitat enhancement, and multiple health benefits. Urban Forestry and Urban Greening, 64, 127300. doi:10.1016/j.ufug.2021.127300.

Nnadi, E. O., Newman, A. P., Coupe, S. J., & Mbanaso, F.U. (2015). Stormwater harvesting for irrigation purposes: An investigation of chemical quality of water recycled in pervious pavement system. Journal of Environmental Management, 147, 246–256. doi:10.1016/j.jenvman.2014.08.020.

Park, J. H., Kim, Y. U., Jeon, J., Wi, S., Chang, S. J., & Kim, S. (2021). Effect of eco-friendly pervious concrete with amorphous metallic fiber on evaporative cooling performance. Journal of Environmental Management, 297, 113269. doi:10.1016/j.jenvman.2021.113269.

Tyner, J. S., Wright, W. C., & Dobbs, P. A. (2009). Increasing exfiltration from pervious concrete and temperature monitoring. Journal of Environmental Management, 90(8), 2636–2641. doi:10.1016/j.jenvman.2009.02.007.

ISCP. (2025). Low-Carbon Concrete Efforts Drive Sustainable Infrastructure Forward. International Society for Concrete Pavements, California, United States. Available online: https://www.concretepavements.org/ (accessed on March 2025).

Kayhanian, M., Li, H., Harvey, J. T., & Liang, X. (2019). Application of permeable pavements in highways for stormwater runoff management and pollution prevention: California research experiences. International Journal of Transportation Science and Technology, 8(4), 358–372. doi:10.1016/j.ijtst.2019.01.001.

Assi, L., Carter, K., Deaver, E. (Eddie), Anay, R., & Ziehl, P. (2018). Sustainable concrete: Building a greener future. Journal of Cleaner Production, 198, 1641–1651. doi:10.1016/j.jclepro.2018.07.123.

Tennis, P. D., Leming, M. L., & Akers, D. J. (2004). Pervious concrete pavements (No. PCA Serial No. 2828): Vol. Portland C, 1-32.

Chandrappa, A. K., & Biligiri, K. P. (2016). Comprehensive investigation of permeability characteristics of pervious concrete: A hydrodynamic approach. Construction and Building Materials, 123, 627–637. doi:10.1016/j.conbuildmat.2016.07.035.

Ibrahim, A., Mahmoud, E., Yamin, M., & Patibandla, V. C. (2014). Experimental study on Portland cement pervious concrete mechanical and hydrological properties. Construction and Building Materials, 50(8), 524–529. doi:10.1016/j.conbuildmat.2013.09.022.

Mhaya, A. M., Shahidan, S., Mohd Zuki, S. S., Hakim, S. J. S., Wan Ibrahim, M. H., Mohammad Azmi, M. A., & Huseien, G. F. (2025). Modified pervious concrete containing biomass aggregate: Sustainability and environmental benefits. Ain Shams Engineering Journal, 16(3), 103324. doi:10.1016/j.asej.2025.103324.

ACI. (2010). ACI 522R-10 Report on Pervious Concrete. American Concrete Institute, Michigan, United States.

Dhruv, S. D., & Dhruv, D. K. (2022). Anomalous current–voltage and impedance behaviour in heterojunction diode. Materials Today: Proceedings, 55, A1–A6. doi:10.1016/j.matpr.2022.04.312.

Jin, W., Jiang, L., Chen, L., Gu, Y., Guo, M., Han, L., Ben, X., Yuan, H., & Lin, Z. (2021). Preparation and characterization of capric-stearic acid/montmorillonite/graphene composite phase change material for thermal energy storage in buildings. Construction and Building Materials, 301, 124102. doi:10.1016/j.conbuildmat.2021.124102.

Singh, S., Ransinchung R.N., G. D., & Kumar, P. (2018). Laboratory Investigation of Concrete Pavements Containing Fine RAP Aggregates. Journal of Materials in Civil Engineering, 30(2), 4017279. doi:10.1061/(asce)mt.1943-5533.0002124.

Singh, S., Ransinchung, G. D., Debbarma, S., & Kumar, P. (2018). Utilization of reclaimed asphalt pavement aggregates containing waste from Sugarcane Mill for production of concrete mixes. Journal of Cleaner Production, 174, 42-52. doi:10.1016/j.jclepro.2017.10.179.

Singh, S., Ransinchung, G. D., & Monu, K. (2019). Sustainable lean concrete mixes containing wastes originating from roads and industries. Construction and Building Materials, 209, 619–630. doi:10.1016/j.conbuildmat.2019.03.122.

Zhang, J., Sesay, T., You, Q., & Jing, H. (2022). Maximizing the Application of RAP in Asphalt Concrete Pavements and Its Long-Term Performance: A Review. Polymers, 14(21), 4736. doi:10.3390/polym14214736.

Sandra, A. K., Kumar J, S., Sharma, S. K., & Sssv, G. R. (2023). Properties of pavement quality concrete prepared with coarse RAP containing different percentages of asphalt. Urban, Planning and Transport Research, 11(1), 2154257. doi:10.1080/21650020.2022.2154257.

Uygunoğlu, T., Bekir Topçu, I., & Çinar Resuloğullari, E. (2024). Durability effect of reclaimed asphalt aggregate on concrete road pavement. Materiales de Construccion, 74(353), 338. doi:10.3989/mc.2024.356823.

Sahdeo, S. K., Ransinchung, G., & Nandi, S. (2024). Investigating the Suitability of Agricultural and Industrial Wastes for Production of RAP Inclusive Pervious Concrete Pavement Mixes: A Sustainable Approach. International Journal of Pavement Research and Technology, 17(5), 1309–1326. doi:10.1007/s42947-023-00303-0.

Chen, Z., Luo, S., Liu, S., Shao, J., He, Y., & Li, Y. (2025). Effect of emulsifier on the interface structure and performance of reclaimed asphalt pavement aggregate cement concrete. Construction and Building Materials, 458, 130923. doi:10.1016/j.conbuildmat.2024.139603.

BIS-IS 2386-4. (1963a). Methods of test for aggregates for concrete, Part 4: Mechanical properties (IS 2386-4). Bureau of Indian Standards, New Delhi, India.

Bureau of Indian Standards (BIS). (1963b). Methods of test for aggregates for concrete, Part 1: Particle size and shape (IS 2386-1). Bureau of Indian Standards, New Delhi, India.

Bureau of Indian Standards (BIS). (1963c). Methods of test for aggregates for concrete, Part 3: Specific gravity, density, voids, absorption and bulking (IS 2386-3). Bureau of Indian Standards, New Delhi, India.

BIS-IS 8112: 43. (1989). IS 8112: 43 grade Ordinary Portland Cement – Specification. Bureau of Indian Standards, New Delhi, India.

Bureau of Indian Standards (BIS). (1988a). IS 4031-4: Methods of physical tests for hydraulic cement, Part 4: Determination of consistency of standard cement paste. Bureau of Indian Standards, New Delhi, India.

Bureau of Indian Standards (BIS). (1988b). IS 4031-5: Methods of physical tests for hydraulic cement, Part5: Determination of initial and final setting times. Bureau of Indian Standards, New Delhi, India.

ASTM C1754.. (2012b). Standard test method for density and void content of hardened pervious concrete. ASTM International, Pennsylvania, United States. doi:10.1520/C1754.

ASTM C617/C617M. (2015a). Standard practice for capping cylindrical concrete. ASTM International, Pennsylvania, United States. doi:10.1520/C0617-10.

BIS- IS 516-1959. (1959). IS 516-1959: Methods of test for strength of concrete. Bureau of Indian Standards, New Delhi, India.

ASTM C1747/C1747M-13: Standard Test Method for Determining Potential Resistance to Degradation of Pervious Concrete by Impact and Abrasion. West Conshohocken, PA: ASTM International. doi:10.1520/C1747_C1747M-13

ASTM C267. (2012a). Standard test methods for chemical resistance of mortars, grouts, and monolithic surfacing and polymer concretes. ASTM International, Pennsylvania, United States. doi:10.1520/C0267-20

Nandi, S., & Ransinchung, G. D. R. N. (2022). Laboratory investigation of Portland cement concrete paver blocks made with Reclaimed Asphalt Pavement aggregates. Road Materials and Pavement Design, 23(3), 546–564. doi:10.1080/14680629.2020.1830153.

Sahdeo, S. K., Ransinchung, G., Rahul, K. L., & Debbarma, S. (2021). Reclaimed Asphalt Pavement as a Substitution to Natural Coarse Aggregate for the Production of Sustainable Pervious Concrete Pavement Mixes. Journal of Materials in Civil Engineering, 33(2), 4020469. doi:10.1061/(asce)mt.1943-5533.0003555.

Bittencourt, S. V., da Silva Magalhães, M., & da Nóbrega Tavares, M. E. (2021). Mechanical behavior and water infiltration of pervious concrete incorporating recycled asphalt pavement aggregate. Case Studies in Construction Materials, 14, 473. doi:10.1016/j.cscm.2020.e00473.

Yang, J., & Jiang, G. (2003). Experimental study on properties of pervious concrete pavement materials. Cement and Concrete Research, 33(3), 381–386. doi:10.1016/S0008-8846(02)00966-3.

Debbarma, S., Ransinchung, G. D., & Singh, S. (2019). Feasibility of roller compacted concrete pavement containing different fractions of reclaimed asphalt pavement. Construction and Building Materials, 199, 508–525. doi:10.1016/j.conbuildmat.2018.12.047.

Abou Sleiman, C. N., Shi, X., & Zollinger, D. G. (2019). An Approach to Characterize the Wearability of Concrete Pavement Surface Treatments. Transportation Research Record, 2673(1), 230–239. doi:10.1177/0361198118821668.

Shi, X., Mirsayar, M. M., Mukhopadhyay, A., & Zollinger, D. (2019). Characterization of two-parameter fracture properties of portland cement concrete containing reclaimed asphalt pavement aggregates by semicircular bending specimens. Cement and Concrete Composites, 95(January), 56–69. doi:10.1016/j.cemconcomp.2018.10.013.

Neville, A. (2004). The confused world of sulfate attack on concrete. Cement and Concrete Research, 34(8), 1275–1296. doi:10.1016/j.cemconres.2004.04.004.

Saboo, N., Nirmal Prasad, A., Sukhija, M., Chaudhary, M., & Chandrappa, A. K. (2020). Effect of the use of recycled asphalt pavement (RAP) aggregates on the performance of pervious paver blocks (PPB). Construction and Building Materials, 262. doi:10.1016/j.conbuildmat.2020.120581.

Diwate, S., Chandrappa, A. K., & Pasla, D. (2024). Comparative assessment of recycled concrete and recycled asphalt aggregate in pervious concrete: emphasis on strength and life cycle assessment. International Journal of Pavement Engineering, 25(1), 2378339. doi:10.1080/10298436.2024.2378339.


Full Text: PDF

DOI: 10.28991/CEJ-2025-011-04-019

Refbacks

  • There are currently no refbacks.




Copyright (c) 2025 Gyanen Takhelmayum, Konsam Rambha Devi

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message