Bearing Capacity and Strength of Bacterial Soil Columns Full-Scale Tests

. Rokhman, Tri Harianto, Achmad B. Muhiddin, Ardy Arsyad

Abstract


Infrastructure development often faces challenges due to soils with low bearing capacity, which can potentially cause instability and subsidence and threaten the safety of structures. Therefore, an efficient and environmentally friendly stabilization method is required. This study aims to evaluate the effectiveness of Microbial Induced Calcite Precipitation (MICP) in improving bearing capacity and soil strength through the formation of bacterial soil columns. This study employed a full-scale physical model test using 40 cm diameter and 200 cm deep soil columns filled with soil mixed with Bacillus subtilis, compacted, and cured for 56 days. The results showed significant improvements in the geotechnical characteristics of the soil, with CBR values increasing from 5.5% to over 12%, unconfined compressive strength reaching 345 kPa, and modulus of elasticity increasing to 12.5 MPa. Soil cohesion increased to 65 kPa, while internal friction angle increased from 10° to 34°. The novelty of this research is the application of MICP technology in the form of bacterial soil columns as an innovative, effective, and sustainable stabilization method to improve the mechanical properties of soft soils.

 

Doi: 10.28991/CEJ-2025-011-04-06

Full Text: PDF


Keywords


Soil Stabilization; MICP; Biocementation; Bacterial Soil Column.

References


Afolagboye, L. O., Ilesanmi, B. I., & Abdu‑Raheem, Y. A. (2024). An appraisal of the problems related to the application of Casagrande Plasticity Chart and Unified Soil Classification System in classifying lateritic soils in Nigeria. Discover Geoscience, 2(1). doi:10.1007/s44288-024-00024-2.

Lin, C., Huang, L., Chen, S., Huang, M., Wang, R., & Tan, Q. (2023). Study on Shielding Effect of the Pile Group in a Soft-Soil Foundation. Applied Sciences (Switzerland), 13(16), 9478. doi:10.3390/app13169478.

Du, J., Zheng, G., Liu, B., Jiang, N. J., & Hu, J. (2021). Triaxial behavior of cement-stabilized organic matter–disseminated sand. Acta Geotechnica, 16, 211-220. doi:10.1007/s11440-020-00992-y.

Alam, S., & Alselami, N. A. (2024). Geotechnical Properties of Fly Ash Blended Expansive Soil: A Review. Civil Engineering Journal, 10(Special Issue), 82–103. doi:10.28991/CEJ-SP2024-010-06.

Lindh, P., & Lemenkova, P. (2023). Geotechnical Properties of Soil Stabilized with Blended Binders for Sustainable Road Base Applications. Construction Materials, 3(1), 110–126. doi:10.3390/constrmater3010008.

Masrour, I., Baba, K., & Doughmi, K. (2024). Geopolymers: An Eco-Friendly Approach to Enhancing the Stability of Earthen Constructions. Mediterranean Architectural Heritage, 40, 226–232. doi:10.21741/9781644903117-24.

Zhang, X., Wang, H., Wang, Y., Wang, J., Cao, J., & Zhang, G. (2025). Improved methods, properties, applications and prospects of microbial induced carbonate precipitation (MICP) treated soil: A review. Biogeotechnics, 3(1), 100123. doi:10.1016/j.bgtech.2024.100123.

Baldovino, J. de J. A., Palma Calabokis, O., & Saba, M. (2024). From Bibliometric Analysis to Experimental Validation: Bibliometric and Literature Review of Four Cementing Agents in Soil Stabilization with Experimental Focus on Xanthan Gum. Sustainability (Switzerland), 16(13), 5363. doi:10.3390/su16135363.

Hasriana, Samang, L., Djide, M. N., & Harianto, T. (2018). A study on clay soil improvement with Bacillus subtilis bacteria as the road subbase layer. International Journal of GEOMATE, 15(52), 114–120. doi:10.21660/2018.52.97143.

Abramov, K., Gelfer, S., Tsesarsky, M., & Raveh-Amit, H. (2024). Differential responses of soil microbiomes to ureolytic biostimulation across depths in Aridisols. Preprint EGUSPHERE-2024-1663. doi:10.5194/egusphere-2024-1663.

Omoregie, A. I., Kan, F. K., Basri, H. F., Silini, M. O. E., & Rajasekar, A. (2025). Enhanced MICP for Soil Improvement and Heavy Metal Remediation: Insights from Landfill Leachate-Derived Ureolytic Bacterial Consortium. Microorganisms, 13(1), 174. doi:10.3390/microorganisms13010174.

Chen, F., Yang, L., Chen, X., & Zhuang, J. (2024). Estimating bacterial breakthrough behaviors based on bacterial retention profiles in porous media. Soil Science Society of America Journal, 88(4), 1479–1487. doi:10.1002/saj2.20673.

Chen, Y., Zhao, L., Zi, J., Han, J., & Zhang, C. (2024). Investigation on the Shear Behavior and Mechanism of MICP-Treated Loess Soil. Geofluids, 2024, 1–10. doi:10.1155/2024/8001743.

Zheng, X., Lu, X., Zhou, M., Huang, W., Zhong, Z., Wu, X., & Zhao, B. (2022). Experimental Study on Mechanical Properties of Root–Soil Composite Reinforced by MICP. Materials, 15(10), 3586. doi:10.3390/ma15103586.

Cui, M. J., Lai, H. J., Wu, S. F., & Chu, J. (2022). Comparison of soil improvement methods using crude soybean enzyme, bacterial enzyme or bacteria-induced carbonate precipitation. Geotechnique, 74(1), 18–26. doi:10.1680/jgeot.21.00131.

Rababah, S., Alawneh, A., Albiss, B. A., Aldeeky, H. H., Bani Ismaeel, E. J., & Mutlaq, S. (2024). Enhancing Soil Stability through Innovative Microbial-Induced Calcium Carbonate Techniques with Sustainable Ingredient. Civil Engineering Journal (Iran), 10(8), 2536–2553. doi:10.28991/CEJ-2024-010-08-08.

Duman, E., Sarıçiçek, Y. E., Pekcan, O., Gurbanov, R., & Gözen, A. G. (2022). Applications of Microbially Induced Calcium Carbonate Precipitation on Non-Woven Geotextiles. IOP Conference Series: Materials Science and Engineering, 1260(1), 012024. doi:10.1088/1757-899x/1260/1/012024.

Hernández, L. M., Garzón, E. G., Sánchez-Soto, P. J., & Morales, E. R. (2023). Simultaneous Biocementation and Compaction of a Soil to Avoid the Breakage of Cementitious Structures during the Execution of Earthwork Constructions. Geotechnics, 3(2), 224–253. doi:10.3390/geotechnics3020014.

Hu, X., Fu, X., Pan, P., Lin, L., & Sun, Y. (2022). Incorporation of Mixing Microbial Induced Calcite Precipitation (MICP) with Pretreatment Procedure for Road Soil Subgrade Stabilization. Materials, 15(19), 6529. doi:10.3390/ma15196529.

Li, Y., Fang, Z., Yang, F., Ji, B., Li, X., & Wang, S. (2022). Elevational changes in the bacterial community composition and potential functions in a Tibetan grassland. Frontiers in Microbiology, 13. doi:10.3389/fmicb.2022.1028838.

Indriani, A. M., Harianto, T., Djamaluddin, A. R., & Arsyad, A. (2021). Bioremediation of Coal Contaminated Soil as the Road Foundations Layer. International Journal of GEOMATE, 21(84), 76–84. doi:10.21660/2021.84.j2124.

Alkadri, Djamaluddin, A. R., Harianto, T., & Arsyad, A. (2024). Soil Mechanical Characteristics Improvement with Bacterial Biocementation Technology. International Journal of GEOMATE, 26(115), 27–33. doi:10.21660/2024.115.4160.

Maureira, A., Zapata, M., Olave, J., Jeison, D., Wong, L. S., Panico, A., Hernández, P., Cisternas, L. A., & Rivas, M. (2024). MICP mediated by indigenous bacteria isolated from tailings for biocementation for reduction of wind erosion. Frontiers in Bioengineering and Biotechnology, 12. doi:10.3389/fbioe.2024.1393334.

Wassie, T. A., & Demir, G. (2023). Behavior of an Embankment on Stone Column-Reinforced Soft Soil. Slovak Journal of Civil Engineering, 31(4), 9–15. doi:10.2478/sjce-2023-0022.

Bziaz, M., Bahi, L., Ouadif, L., Bahi, A., & Mansouri, H. (2023). Evaluating the efficiency of stone columns in mitigating liquefaction risks and enhancing soil bearing capacity: A case study. International Journal of Innovative Research and Scientific Studies, 6(2), 310–321. doi:10.53894/ijirss.v6i2.1406.

Mandeep, K., Pradeep, M., Syed, N. M., & Rakesh, K. (2023). Parametric Study on Stone Column for improving Seismic Response of Foundation. Disaster Advances, 16(9), 31–37. doi:10.25303/1609da031037.

Kazmi, D., Serati, M., Williams, D. J., Olaya, S. Q., Qasim, S., Cheng, Y. P., & Carraro, J. A. H. (2022). Kaolin Clay Reinforced with a Granular Column Containing Crushed Waste Glass or Traditional Construction Sands. International Journal of Geomechanics, 22(4), 04022030. doi:10.1061/(asce)gm.1943-5622.0002322.

Liu, J., Li, G., & Li, X. (2021). Geotechnical Engineering Properties of Soils Solidified by Microbially Induced CaCO3Precipitation (MICP). Advances in Civil Engineering, 6683930. doi:10.1155/2021/6683930.

Rahman, M. M., Hora, R. N., Ahenkorah, I., Beecham, S., Karim, M. R., & Iqbal, A. (2020). State-of-the-art review of microbial-induced calcite precipitation and its sustainability in engineering applications. Sustainability (Switzerland), 12(15), 6281. doi:10.3390/SU12156281.

Hasriana, Samang, L., Harianto, T., & Djide, M. N. (2018). Bearing capacity improvement of soft soil subgrade layer with Bio Stabilized Bacillus Subtilis. MATEC Web of Conferences, 181, 0–5. doi:10.1051/matecconf/201818101001.

Xiao, P., Liu, H., Stuedlein, A. W., Evans, T. M., & Xiao, Y. (2019). Effect of relative density and biocementation on cyclic response of calcareous sand. Canadian Geotechnical Journal, 56(12), 1849–1862. doi:10.1139/cgj-2018-0573.

Yusuf, H., Azis, A., Badaruddin, S., Saiby, A. M. S., Faisal, Z., & Saing, Z. (2022). Physical modeling of sand columns application in recharge reservoir to prevent seawater intrusion. Water Supply, 22(2), 2170–2178. doi:10.2166/ws.2021.365.

Shahin, M. A., Jamieson, K., & Cheng, L. (2020). Microbial-induced carbonate precipitation for coastal erosion mitigation of sandy slopes. Geotechnique Letters, 10(2), 211–215. doi:10.1680/jgele.19.00093.

Qiao, Y., Huang, Q., Guo, H., Qi, M., Zhang, H., Xu, Q., Shen, Q., & Ling, N. (2024). Nutrient status changes bacterial interactions in a synthetic community. Applied and Environmental Microbiology, 90(1). doi:10.1128/aem.01566-23.

Zhang, X., Zheng, C., Xiong, K., Yang, K., & Liang, S. (2023). Effect of fiber type and content on mechanical properties of microbial solidified sand. Frontiers in Materials, 10. doi:10.3389/fmats.2023.1218795.

Tiwari, N., Satyam, N., & Sharma, M. (2021). Micro-mechanical performance evaluation of expansive soil biotreated with indigenous bacteria using MICP method. Scientific Reports, 11(1), 10324. doi:10.1038/s41598-021-89687-2.

Zhou, S. Q., Zhou, D. W., Zhang, Y. F., & Wang, W. J. (2019). Study on Physical-Mechanical Properties and Microstructure of Expansive Soil Stabilized with Fly Ash and Lime. Advances in Civil Engineering, 4693757. doi:10.1155/2019/4693757.

Mekonnen, E., Kebede, A., Tafesse, T., & Tafesse, M. (2020). Application of Microbial Bioenzymes in Soil Stabilization. International Journal of Microbiology, 1725482, 1–8. doi:10.1155/2020/1725482.

Abdel-Aleem, H., Dishisha, T., Saafan, A., Aboukhadra, A. A., & Gaber, Y. (2019). Biocementation of soil by calcite/aragonite precipitation using: Pseudomonas azotoformans and Citrobacter freundii derived enzymes. RSC Advances, 9(31), 17601–17611. doi:10.1039/c9ra02247c.

Gu, Z., Chen, Q., Wang, L., Niu, S., Zheng, J., Yang, M., & Yan, Y. (2022). Morphological Changes of Calcium Carbonate and Mechanical Properties of Samples during Microbially Induced Carbonate Precipitation (MICP). Materials, 15(21), 7754. doi:10.3390/ma15217754.

Peng, J., & Liu, Z. (2019). Influence of temperature on microbially induced calcium carbonate precipitation for soil treatment. PLoS ONE, 14(6), 218396. doi:10.1371/journal.pone.0218396.

Hairulla, Harianto, T., Djamaluddin, A. R., & Arsyad, A. (2024). The Performance of Geosynthetic Reinforcement Road Pavement over Expansive Soil Subgrade. Civil Engineering Journal, 10(12), 4117–4131. doi:10.28991/CEJ-2024-010-12-020.

Badawi, M. I., Awwad, M., Roshdy, M., & El-Kasaby, E. S. A. (2024). Investigation of an Innovative Technique for R.C. Piles Reinforced by Geo-Synthetics under Axial Load. Civil Engineering Journal, 10(10), 3292–3306. doi:10.28991/CEJ-2024-010-10-011.


Full Text: PDF

DOI: 10.28991/CEJ-2025-011-04-06

Refbacks

  • There are currently no refbacks.




Copyright (c) 2025 Rokhman Rokhman, Tri Harianto, Achmad Bakri Muhiddin, Ardy Arsyad

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message