Piezometer Time-Lag and Pore Pressure Ratio for Identification of Dam Internal Erosion
Abstract
Doi: 10.28991/CEJ-2025-011-03-019
Full Text: PDF
Keywords
References
Damanab, P. S., Alizadeh, S. S., Rasoulzadeh, Y., Moshashaie, P., & Varmazyar, S. (2015). Failure modes and effects analysis (FMEA) technique: a literature review. Scientific Journal of Review, 4(1), 1-6.
Peyras, L., Royet, P., & Boissier, D. (2006). Dam ageing diagnosis and risk analysis: Development of methods to support expert judgment. Canadian Geotechnical Journal, 43(2), 169–186. doi:10.1139/t05-096.
Wang, S. W., Xu, Y. L., Gu, C. S., & Bao, T. F. (2018). Monitoring models for base flow effect and daily variation of dam seepage elements considering time lag effect. Water Science and Engineering, 11(4), 344-354.. doi:10.1016/j.wse.2018.12.004.
Jiang, Z., & Chen, H. (2022). A new early warning method for dam displacement behavior based on non-normal distribution function. Water Science and Engineering, 15(2), 170–178. doi:10.1016/j.wse.2022.04.001.
Zhao, M., Liu, P., Jiang, L., & Wang, K. (2021). The Influence of Internal Erosion in Earthen Dams on the Potential Difference Response to Applied Voltage. Water, 13(23), 3387. doi:10.3390/w13233387.
Foster, M., Fell, R., & Spannagle, M. (2000). The statistics of embankment dam failures and accidents. Canadian Geotechnical Journal, 37(5), 1000–1024. doi:10.1139/t00-030.
Zhang, L. M., Xu, Y., & Jia, J. S. (2009). Analysis of earth dam failures: A database approach. Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards, 3(3), 184–189. doi:10.1080/17499510902831759.
ICOLD. (2019). ICOLD Incident Database Bulletin 99 Update: Statistical Analysis of Dam Failures. Committee on Dam Safety, International Commission on Large Dams (ICOLD), Paris, France.
Donnelly, C. R., & Acharya, A. M. (2020). A Discussion on the Evolution and Application of Quantitative Risk Informed Dam Safety Decision Making. Water Resources Development and Management, 520–548. doi:10.1007/978-981-15-1971-0_52.
Fu, C., Yao, X., Li, T., Shen, H., Wang, Z., & Jiang, J. (2014). Investigation and evaluation of increasing uplift pressure in an arch dam: A case study of the Huaguangtan Dam. KSCE Journal of Civil Engineering, 18(6), 1858–1867. doi:10.1007/s12205-014-0432-3.
Su, H., Chen, Z., & Wen, Z. (2015). Performance improvement method of support vector machine-based model monitoring dam safety. Structural Control and Health Monitoring, 23(2), 252–266. doi:10.1002/stc.1767.
Su, H., Hu, J., & Yang, M. (2015). Dam seepage monitoring based on distributed optical fiber temperature system. IEEE Sensors Journal, 15(1), 9–13. doi:10.1109/JSEN.2014.2335197.
Alonso, E. E., & Pinyol, N. M. (2016). Numerical analysis of rapid drawdown: Applications in real cases. Water Science and Engineering, 9(3), 175–182. doi:10.1016/j.wse.2016.11.003.
Leyla, H., Nadia, S., & Bouchrit, R. (2022). Modeling and predictive analyses related to piezometric level in an earth dam using a back propagation neural network in comparison on non-linear regression. Modeling Earth Systems and Environment, 9(1), 1169–1180. doi:10.1007/s40808-022-01558-5.
Tinoco, J., de Granrut, M., Dias, D., Miranda, T., & Simon, A.-G. (2019). Piezometric level prediction based on data mining techniques. Neural Computing and Applications, 32(8), 4009–4024. doi:10.1007/s00521-019-04392-6.
Salazar, F., Morán, R., Toledo, M. Á., & Oñate, E. (2015). Data-Based Models for the Prediction of Dam Behaviour: A Review and Some Methodological Considerations. Archives of Computational Methods in Engineering, 24(1), 1–21. doi:10.1007/s11831-015-9157-9.
Ziggah, Y. Y., & Issaka, Y. (2023). Estimation of dam piezometric water level using new hybrid intelligent models for dam safety assessment. International Journal of Energy and Water Resources, 461–473. doi:10.1007/s42108-023-00252-1.
Hariri-Ardebili, M. A., Mahdavi, G., Nuss, L. K., & Lall, U. (2023). The role of artificial intelligence and digital technologies in dam engineering: Narrative review and outlook. Engineering Applications of Artificial Intelligence, 126, 106813. doi:10.1016/j.engappai.2023.106813.
CAO, W., WU, X., LI, J., & KANG, F. (2024). A review of artificial intelligence in dam engineering. Journal of Infrastructure Intelligence and Resilience, 100122. doi:10.1016/j.iintel.2024.100122.
Rehamnia, I., Al-Janabi, A. M. S., Sammen, S. S., Pham, B. T., & Prakash, I. (2024). Prediction of seepage flow through earth fill dams using machine learning models. HydroResearch, 7, 131–139. doi:10.1016/j.hydres.2024.01.005.
Moradi Nazarpoor, S., Rezaei, M., & Mali, F. (2024). A new fuzzy method for investigating the effects of dam on aquifer: case study of Rudbal dam, south of Iran. Scientific Reports, 14(1), 14503. doi:10.1038/s41598-024-65353-1.
Sarayli, S., Sert, S., & Sonmez, O. (2024). Analysis of Fill Dam Using Finite Element Method and Comparison with Monitoring Results. Water, 16(17), 2387. doi:10.3390/w16172387.
Farajniya, R., Poursorkhabi, R. V., Zarean, A., & Dabiri, R. (2024). Analysis and monitoring of the behavior of a rock fill dam ten years after construction: a case study of the Iran-Madani Dam. Geoenvironmental Disasters, 11(1), 30. doi:10.1186/s40677-024-00295-4.
Nhu, T. Q., Kunsuwan, N., Mairaing, W., Kunsuwan, B., & Chalermpornchai, T. (2024). Behavior of seepage in earth dams through complex foundations using three-dimensional finite element method. Geomechanics and Engineering, 39(3), 273-282. doi:10.12989/gae.2024.39.3.273.
Behshad, A. (2020). Instrumentation issues and problems in earth dams (Case Study; Shah Qasim Dam in Yasouj, Iran). Nexo Revista Científica, 33(02), 737–745. doi:10.5377/nexo.v33i02.10805.
Li, X., Li, Y., Lu, X., Wang, Y., Zhang, H., & Zhang, P. (2019). An online anomaly recognition and early warning model for dam safety monitoring data. Structural Health Monitoring, 19(3), 796–809. doi:10.1177/1475921719864265.
Rong, Z., Pang, R., Xu, B., & Zhou, Y. (2024). Dam safety monitoring data anomaly recognition using multiple-point model with local outlier factor. Automation in Construction, 159, 105290. doi:10.1016/j.autcon.2024.105290.
Chen, S., Gu, C., Lin, C., Wang, Y., & Hariri-Ardebili, M. A. (2020). Prediction, monitoring, and interpretation of dam leakage flow via adaptative kernel extreme learning machine. Measurement, 166, 108161. doi:10.1016/j.measurement.2020.108161.
Olsen, R., & Stephens, I. (2016). Relearning how to look at piezometric data for seepage evaluation. USSD 2016 annual conference, 11-15 April, 2016, Denver, United States.
Radzicki, K., & Stoliński, M. (2024). Seepage monitoring and leaks detection along an earth dam with a multi-sensor thermal-active system. Bulletin of Engineering Geology and the Environment, 83(9). doi:10.1007/s10064-024-03826-3.
Hvorslev, M. J. (1951). Time Lag and Soil Permeability in Ground-Water Observations (No. 36). U.S. Army Waterways Experiment Station, Mississippi, United States.
Bonelli, S., & Royet, P. (2001). Delayed response analysis of dam monitoring data. ICOLD European symposium on dams in a European context, 25-27 June, 2001, Geiranger, Norway.
Razavi, B., Parehkar, M., & Gholami, A. (2011). Investigation on Pore Water Pressure in Core of Karkheh Dam. International Journal of Civil and Environmental Engineering, 5(11), 539-542.
Thongthamchart, C., & Brohmsubha, P. (2014). The Safety Criteria for Geotechnical Instruments on the Internal Erosion in Embankment Dams. International Symposium on DAMS in a Global Environmental Challenges, 1-6 June, Bali, Indonesia.
Wang, S. W., & Bao, T. F. (2013). Monitoring Model for Dam Seepage Based on Lag Effect. Applied Mechanics and Materials, 353–356, 2456–2462. doi:10.4028/www.scientific.net/amm.353-356.2456.
Prasad, R., & Dixit, M. (2020). Performance Monitoring Of Dams through Piezometers-A Case Study. International Journal of Engineering and Applied Sciences, 2, 1-8.
Torabi Haghighi, A., Tuomela, A., & Hekmatzadeh, A. A. (2020). Assessing the Efficiency of Seepage Control Measures in Earthfill Dams. Geotechnical and Geological Engineering, 38(5), 5667–5680. doi:10.1007/s10706-020-01371-w.
Demianiuk, A., & Stefanyshyn, D. (2020). The prognostic modelling of piezometric levels based on seepage monitoring in earthen dams. MATEC Web of Conferences, 322, 01047. doi:10.1051/matecconf/202032201047.
Demianiuk, A., & Stefanyshyn, D. (2023). The case of internal erosion in the earth dam of the Dnipro River Hydropower plants cascade. Proceedings of the Conference: 29th Meeting of European Working Group on Internal Erosion in Embankment Dams, Dikes and Levees and Their Foundations, 2-5 July, Lyon, France.
Geotechnical Engineering Research and Development Center. (2019). Semi-Quantitative Risk Assessment on Stability of Saddle Dikes of Sirikit Dam (Final Report). Electricity Generating Authority of Thailand, Nonthaburi, Thailand. (In Thai).
Research Center for Sustainable Infrastructure Engineering. (2020). Design Report Slurry Cutoff Wall Saddle Dike 4 (Final Report). Electricity Generating Authority of Thailand, Nonthaburi, Thailand. (In Thai).
Chalermpornchai, T., Kunsuwan, B., & Mairaing, W. (2021). Simulation of rock crack and permeability in dam foundation during hydraulic fracturing. International Journal of GEOMATE, 21(86), 55–62. doi:10.21660/2021.86.j2276.
Kunsuwan, B., Chalermpornchai, T., Mairaing, W., & Thepjanthra, W. (2023). Assessment of Hydraulic Fracturing in Earth Dams on Complex Foundations. Journal of Disaster Research, 18(3), 270–279. doi:10.20965/jdr.2023.p0270.
Saejiaw, W., Kunsuwan, B., Mairaing, W., & Chalermpornchai, T. (2023). Evaluation of Hydraulic Fracturing Phenomena in Earth Dam. UBU Engineering Journal, 16(1), 44-56.
Wang, J. J. (2014). Hydraulic fracturing in earth-rock fill dams. John Wiley & Sons, Hoboken, United States. doi:10.1002/9781118725542.
Salari, M., Akhtarpour, A., & Ekramifard, A. (2021). Hydraulic fracturing: a main cause of initiating internal erosion in a high earth-rock fill dam. International Journal of Geotechnical Engineering, 15(2), 207–219. doi:10.1080/19386362.2018.1500122.
Sherard, J. L. (1986). Hydraulic Fracturing in Embankment Dams. Journal of Geotechnical Engineering, 112(10), 905–927. doi:10.1061/(asce)0733-9410(1986)112:10(905).
FEMA P-1032. (2015). Evaluation and monitoring of seepage and internal erosion. Interagency committee on dam safety (ICODS), Federal Emergency Management Agency (FEMA), Washington, United States.
Singharajwarapan, S., & Berry, R. (2000). Tectonic implications of the Nan Suture zone and its relationship to the Sukhothai Fold Belt, Northern Thailand. Journal of Asian Earth Sciences, 18(6), 663–673. doi:10.1016/S1367-9120(00)00017-1.
DOI: 10.28991/CEJ-2025-011-03-019
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Wiphada Thepjunthra

This work is licensed under a Creative Commons Attribution 4.0 International License.