Sustainable Asphalt Mixtures Comprising Steel Slag Filler and SBS-Modified Binder: An Experimental Investigation

Ahmed F. Al-Tameemi, Zahraa T. Al-Fayyadh, Hasan Al-Mosawe, Yu Wang, Aous A. Moyet

Abstract


Utilizing steel slag powder as a mineral filler in asphalt concrete mixtures has garnered increasing attention due to its attractive benefits in both sustainability and material properties. The paper aims to critically evaluate the replacement of mineral filler with steel slag to produce a sustainable mixture. The replacement was made at 3 varied contents, i.e., 0%, 50%, and 100%, and meanwhile working together with a modified asphalt binder using 4% styrene-butadiene-styrene polymer. All designed mixtures were tested for volumetric properties and Marshall stability; an indirect tensile test was performed to determine the moisture susceptibility of all the mixtures of optimized binder content. At last, Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray (EDX) analyses were performed to examine the crystal structure, microscopic attributes, and chemical composition of the steel slag particles and the limestone dust and compare their differences. The study showed that steel slag used for mineral filler can significantly enhance Marshall properties and moisture susceptibility of asphalt mixtures. Working together with the SBS-modified binder, the positive effect was further pronounced. SEM analysis revealed that steel slag has a rough, angular surface texture with a high porosity and specific surface area. EDX analysis confirmed the pozzolanic composition of steel slag.

 

Doi: 10.28991/CEJ-2025-011-04-04

Full Text: PDF


Keywords


Sustainability; Industrial By-Product; Steel Slag; Asphalt Concrete; Material Properties; SBS-Modified Binder.

References


Wang, Y., Latief, R. H., Al‐mosawe, H., Mohammad, H. K., Albayati, A., & Haynes, J. (2021). Influence of iron filing waste on the performance of warm mix asphalt. Sustainability (Switzerland), 13(24), 13828. doi:10.3390/su132413828.

Wei, Q., Ashaibi, A. Al, Wang, Y., Albayati, A., & Haynes, J. (2022). Experimental study of temperature effect on the mechanical tensile fatigue of hydrated lime modified asphalt concrete and case application for the analysis of climatic effect on constructed pavement. Case Studies in Construction Materials, 17. doi:10.1016/j.cscm.2022.e01622.

Ashaibi, A. Al, Wang, Y., Albayati, A., Weekes, L., & Haynes, J. (2024). Uni- and tri-axial tests and property characterization for thermomechanical effect on hydrated lime modified asphalt concrete. Construction and Building Materials, 418. doi:10.1016/j.conbuildmat.2024.135307.

Shi, K., Ma, F., Liu, J., Fu, Z., Song, R., Yuan, D., & Ogbon, A. W. (2024). Evolution of SBS-modified asphalt performance under aging and rejuvenation cycle conditions. Construction and Building Materials, 416. doi:10.1016/j.conbuildmat.2024.135156.

Tian, Y., Li, H., Sun, L., Zhang, H., Harvey, J., Yang, J., Yang, B., & Zuo, X. (2021). Laboratory investigation on rheological, chemical and morphological evolution of high content polymer modified bitumen under long-term thermal oxidative aging. Construction and Building Materials, 303. doi:10.1016/j.conbuildmat.2021.124565.

Mahmood, A. O., & Kattan, R. A. (2023). Improvement of Engineering Properties of Asphalt Binder and Mixture by Using SBS Additive Material. Advances in Civil Engineering, 7151175. doi:10.1155/2023/7151175.

Li, N., Zhan, H., Yu, X., Tang, W., Yu, H., & Dong, F. (2021). Research on the high temperature performance of asphalt pavement based on field cores with different rutting development levels. Materials and Structures/Materiaux et Constructions, 54(2), 1-12. doi:10.1617/s11527-021-01672-3.

Cui, Y., Cui, S., & Guo, L. (2022). Performance and Mechanism of Waste Oil Recycled SBS Modified Asphalt. Jianzhu Cailiao Xuebao/Journal of Building Materials, 25(2), 164–170. doi:10.3969/j.issn.1007-9629.2022.02.008.

Li, H., Wang, H., Lin, J., Yang, J., & Yao, Y. (2024). Study on the Effect of SBS/HVA/CRM Composite-Modified Asphalt on the Performance of Recycled Asphalt Mixtures. Polymers, 16(22), 3226. doi:10.3390/polym16223226.

Abed, M. A., Al-Tameemi, A. F., Abed, A. H., & Wang, Y. (2022). Direct tensile test evaluation and characterization for mechanical and rheological properties of polymer modified hot mix asphalt concrete. Polymer Composites, 43(9), 6381–6388. doi:10.1002/pc.26949.

Pasetto, M., Baliello, A., Giacomello, G., & Pasquini, E. (2023). The Use of Steel Slags in Asphalt Pavements: A State-of-the-Art Review. Sustainability (Switzerland), 15(11), 8817. doi:10.3390/su15118817.

Liu, J., & Guo, R. (2018). Applications of Steel Slag Powder and Steel Slag Aggregate in Ultra-High Performance Concrete. Advances in Civil Engineering, 1426037. doi:10.1155/2018/1426037.

Song, Q., Guo, M.-Z., Wang, L., & Ling, T.-C. (2021). Use of steel slag as sustainable construction materials: A review of accelerated carbonation treatment. Resources, Conservation and Recycling, 173, 105740. doi:10.1016/j.resconrec.2021.105740.

Yildirim, I. Z., & Prezzi, M. (2022). Subgrade stabilisation mixtures with EAF steel slag: an experimental study followed by field implementation. International Journal of Pavement Engineering, 23(6), 1754–1767. doi:10.1080/10298436.2020.1823389.

Okan Sirin, R. T., & Sadek, H. (2014). Recycling of Local Qatar’s Steel Slag and Gravel Deposits in Road Construction. International Journal of Waste Resources, 4(4), 1000167. doi:10.4172/2252-5211.1000167.

Akbarnejad, S., Copuroglu, O., Houben, L. J. M., & Molenaar, A. A. A. (2012). Characterization of blast furnace slag to be used as road base material. Proceedings of the 7th International Conference on Maintenance and Rehabilitation of Pavements and Technological Control, 28-30 August, 2012, Auckland, New Zealand.

Aziz, M. M. A., Shokri, M., Ahsan, A., Liu, H. Y., Tay, L., & Muslim, N. H. (2020). An Overview on Performance of Steel Slag in Highway Industry. Journal of Advanced Research in Materials Science, 67(1), 1–10. doi:10.37934/arms.67.1.110.

Hosseinzadeh, N., Rezaei, M. J., & Hosseini, S. M. (2016). Investigation and performance improvement of hot mix asphalt concrete containing EAF slag. International Journal of Engineering and Technology, 8(4), 260–264. doi:10.7763/IJET.2016.V8.895.

Oluwasola, E. A., Hainin, M. R., & Aziz, M. M. A. (2015). Evaluation of asphalt mixtures incorporating electric arc furnace steel slag and copper mine tailings for road construction. Transportation Geotechnics, 2, 47–55. doi:10.1016/j.trgeo.2014.09.004.

Hassan, H. F., Al-Shamsi, K., & Al-Jabri, K. (2024). Effect of steel slag on the permanent deformation and life cycle cost of asphalt concrete pavements. International Journal of Pavement Research and Technology, 17(6), 1513-1530. doi:10.1007/s42947-023-00314-x.

Ameri, M., Hesami, S., & Goli, H. (2013). Laboratory evaluation of warm mix asphalt mixtures containing electric arc furnace (EAF) steel slag. Construction and Building Materials, 49, 611–617. doi:10.1016/j.conbuildmat.2013.08.034.

Zhao, X., & Zhang, Y. (2024). Analyzing the Mechanical and Durability Characteristics of Steel Slag-Infused Asphalt Concrete in Roadway Construction. Buildings, 14(3), 679. doi:10.3390/buildings14030679.

Liu, J., Yu, B., & Hong, Q. (2020). Molecular dynamics simulation of distribution and adhesion of asphalt components on steel slag. Construction and Building Materials, 255. doi:10.1016/j.conbuildmat.2020.119332.

Liu, J., Yu, B., Wang, S., Li, L., & Zhang, J. (2021). Use of tricalcium silicate to evaluate asphalt absorption on steel slag: Atomic simulation and micro-scale characterization. Measurement, 177, 109224. doi:10.1016/j.measurement.2021.109224.

Wu, S., Xue, Y., Ye, Q., & Chen, Y. (2007). Utilization of steel slag as aggregates for stone mastic asphalt (SMA) mixtures. Building and Environment, 42(7), 2580–2585. doi:10.1016/j.buildenv.2006.06.008.

Gao, J., Sha, A., Wang, Z., Tong, Z., & Liu, Z. (2017). Utilization of steel slag as aggregate in asphalt mixtures for microwave deicing. Journal of Cleaner Production, 152, 429–442. doi:10.1016/j.jclepro.2017.03.113.

Li, S., Xiong, R., Zhai, J., Zhang, K., Jiang, W., Yang, F., Yang, X., & Zhao, H. (2020). Research Progress on Skid Resistance of Basic Oxygen Furnace (BOF) Slag Asphalt Mixtures. Materials, 13(9), 2169. doi:10.3390/ma13092169.

Xu, H., Wu, S., Li, H., Zhao, Y., & Lv, Y. (2020). Study on recycling of steel slags used as coarse and fine aggregates in induction healing asphalt concretes. Materials, 13(4), 889. doi:10.3390/ma13040889.

Bhupathi, S., Adepu, R., MVSS, S., Vijayapuri, V. R., & NR, D. M. (2025). Experimental evaluation of eco-friendly asphalt mixtures with recycled fine aggregates and steel slag. Innovative Infrastructure Solutions, 10(1), 1-21. doi:10.1007/s41062-024-01834-6.

Gan, Y., Li, C., Zou, J., Wang, W., & Yu, T. (2022). Evaluation of the impact factors on the leaching risk of steel slag and its asphalt mixture. Case Studies in Construction Materials, 16. doi:10.1016/j.cscm.2022.e01067.

Euroslag. (2025). Properties. The European Association Representing Metallurgical Slag Producers and Processors (Euroslag), Duisburg, Germany. Available online: https://www.euroslag.com/products/properties/ (accessed on March 2025).

Zeinoddin, H. S., Abtahi, S. M., Hejazi, S. M., Babamohammadi, S., Goli, A., & Amuchi, M. (2016). Design and Production of Steel Slag Warm Mix Asphalt (SSWMA) Using an Amino-Based Resin. Transportation Infrastructure Geotechnology, 3(3–4), 91–108. doi:10.1007/s40515-016-0032-4.

Abbas, A. S. (2020). Effect of fly ash and styrene butadiene rubber on the properties of hot mix asphalt. AIP Conference Proceedings, 2213. doi:10.1063/5.0000222.

Abbas, H. F., & Abed, A. H. (2023). Enhancement of Hot Mix Asphalt stability by utilizing Cement Kiln Dust and Styrene-Butadiene-Styrene Polymer. Al-Nahrain Journal for Engineering Sciences, 26(2), 124-130. doi:10.29194/njes.26020124.

Nie, Y., Liu, Q., Xiang, Z., Zhong, S., & Huang, X. (2023). Performance and Modification Mechanism of Recycled Glass Fiber of Wind Turbine Blades and SBS Composite-Modified Asphalt. Applied Sciences (Switzerland), 13(10), 6335. doi:10.3390/app13106335.

Shen, A., Zhai, C., Guo, Y., & Yang, X. (2018). Mechanism of adhesion property between steel slag aggregate and rubber asphalt. Journal of Adhesion Science and Technology, 32(24), 2727–2740. doi:10.1080/01694243.2018.1507505.

ASTM C127-15. (2024). Standard Test Method for Relative Density (Specific Gravity) and Absorption of Coarse Aggregate. ASTM International, Pennsylvania, United States. doi:10.1520/C0127-15.

ASTM C131/C131M-20. (2020). Standard Test Method for Resistance to Degradation of Small-Size Coarse Aggregate by Abrasion and Impact in the Los Angeles Machine. ASTM International, Pennsylvania, United States. doi:10.1520/C0131_C0131M-20.

ASTM C88/C88M-18. (2004). Standard Test Method for Soundness of Aggregates by Use of Sodium Sulfate or Magnesium Sulfate. ASTM International, Pennsylvania, United States. doi:10.1520/C0088_C0088M-18.

Asphalt Institute Manual Series No. 02. (2015). MS-2 Asphalt Mix Design Methods. 7th Edition, Asphalt Institute, Lexington, United States.

Zhang, J., Cooley, L. A., Hurley, G., & Parker, F. (2004). Effect of superpave defined restricted zone on hot-mix asphalt performance. Transportation Research Record, 1891, 103–111. doi:10.3141/1891-13.

Hu, B., Huang, W., Yu, J., Xiao, Z., & Wu, K. (2021). Study on the adhesion performance of asphalt-calcium silicate hydrate gel interface in semi-flexible pavement materials based on molecular dynamics. Materials, 14(16), 4406. doi:10.3390/ma14164406.


Full Text: PDF

DOI: 10.28991/CEJ-2025-011-04-04

Refbacks

  • There are currently no refbacks.




Copyright (c) 2025 Ahmed Farhan Al-Tameemi, Zahraa Talib Al-Fayyadh, Hasan Mosa Al-Mosawe, Yu Wang, Aous Abdulhussain Moyet

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message