Investigation of an Innovative Technique for R.C. Square Footing Reinforced by GFRP and BFRP Bars with HSC

Mona I. Badawi, Marwa I. Badawi, Mahmoud Awwad

Abstract


The utilization of alternate reinforcement materials to improve footing capacity performance has garnered significant interest in recent years. Limited research has been conducted to understand the impacts of basalt reinforcement. This study aims to investigate the performance of the high-strength concrete (HSC) footing reinforced by alternative materials such as glass fiber-reinforced polymer (GFRP) bars and basalt fiber-reinforced polymer (BFRP) bars. This work contains experimental and finite element (FE) numerical modeling aimed at investigating the behavior and crack propagation of HSC footings. Axial load investigations were conducted on RC square footings with cross sections of 300×300×90 mm for different materials in reinforcing the RC footing, and an experimental investigation of mechanical properties has been carried out. The main reinforcement for the footing has been varied. Two types of material, namely, glass fiber-reinforced polymer (GFRP) bars and basalt fiber-reinforced polymer (BFRP) bars, were used. Four types of concrete mixture were used: normal concrete (NC), high-strength concrete (HSC), glass fiber-reinforced concrete (GFRC), and HSC+ glass fiber bristles. The experimental results demonstrated an improvement in the ultimate load by 28-49% and an enhancement in performance represented in the cracking pattern. Additionally, a 3D nonlinear finite element (FE) analysis utilizing Abaqus software was conducted to verify the numerical results with experimental findings; the results proved the suitability of the employed experimental setup.

 

Doi: 10.28991/CEJ-2025-011-04-017

Full Text: PDF


Keywords


GFRP Bars; BFRP Bars; FRP Concrete; Square Footing; FEM.

References


El-Sayed, T. A., Abdallah, K. S., Ahmed, H. E., & El-Afandy, T. H. (2023). Structural Behavior of Ultra-High Strength Concrete Columns Reinforced with Basalt Bars Under Axial Loading. International Journal of Concrete Structures and Materials, 17(1), 1103. doi:10.1186/s40069-023-00600-9.

Badawi, M. I., Awwad, M., Roshdy, M., & El-Kasaby, E. S. A. (2024). Investigation of an Innovative Technique for R.C. Piles Reinforced by Geo-Synthetics Under Axial Load. Civil Engineering Journal (Iran), 10(10), 3292–3306. doi:10.28991/CEJ-2024-010-10-011.

Makhlouf, M. H., Ismail, G., Abdel Kreem, A. H., & Badawi, M. I. (2023). Investigation of transverse reinforcement for R.C flat slabs against punching shear and comparison with innovative strengthening technique using FRP ropes. Case Studies in Construction Materials, 18(2), 1935. doi:10.1016/j.cscm.2023.e01935.

El-kasaby, E. S. A., Awwad, M., & M. Mansour, A. (2023). Experimental study of glass fiber concrete piles reinforced with GFRP bars and geogrid under concentric loads. International Journal of Advanced Engineering, Management and Science, 9(9), 66–74. doi:10.22161/ijaems.99.7.

El-Kasaby, E.-S. A., Awwad, M., Roshdy, M., & Abo-Shark, A. A. (2023). Behavior of Square Footings Reinforced with Glass Fiber Bristles and Biaxial Geogrid. European Journal of Engineering and Technology Research, 8(4), 5–11. doi:10.24018/ejeng.2023.8.4.3075.

Hadad, H. S., Nooman, M. T., & Saleh, K. A. (2021). Behaviors of isolated footings reinforced with glass fiber bars. Al-Azhar University Civil Engineering Research Magazine, 43(2), 35–48.

Latha, G. M., & Somwanshi, A. (2009). Bearing capacity of square footings on geosynthetic reinforced sand. Geotextiles and Geomembranes, 27(4), 281–294. doi:10.1016/j.geotexmem.2009.02.001.

El-Nemr, A., Ahmed, E. A., & Benmokrane, B. (2013). Flexural Behavior and Serviceability of Normal-and High-Strength Concrete Beams Reinforced with Glass Fiber-Reinforced Polymer Bars. ACI structural journal, 110(6). doi:10.14359/51686162.

Maranan, G. B., Manalo, A. C., Benmokrane, B., Karunasena, W., & Mendis, P. (2015). Evaluation of the flexural strength and serviceability of geopolymer concrete beams reinforced with glass-fibre-reinforced polymer (GFRP) bars. Engineering Structures, 101, 529–541. doi:10.1016/j.engstruct.2015.08.003.

Elgabbas, F., Vincent, P., Ahmed, E. A., & Benmokrane, B. (2016). Experimental testing of basalt-fiber-reinforced polymer bars in concrete beams. Composites Part B: Engineering, 91, 205–218. doi:10.1016/j.compositesb.2016.01.045.

Li, Z., Zhu, H., Du, C., Gao, D., Yuan, J., & Wen, C. (2021). Experimental study on cracking behavior of steel fiber-reinforced concrete beams with BFRP bars under repeated loading. Composite Structures, 267, 113878. doi:10.1016/j.compstruct.2021.113878.

Mohamed, O. A., Hawat, W. Al, & Keshawarz, M. (2021). Durability and mechanical properties of concrete reinforced with basalt fiber-reinforced polymer (BFRP) bars: Towards sustainable infrastructure. Polymers, 13(9), 1402. doi:10.3390/polym13091402.

Wu, Z., Wang, X., & Wu, G. (2012). Advancement of structural safety and sustainability with basalt fiber reinforced polymers. Proceedings of the 6th International Conference on FRP Composites in Civil Engineering, CICE 2012, 13-15 June, 2012, Rome, Italy.

Patnaik, A., Puli, R., Mylavarapu, R., & Basalt, F. R. P. (2004). A new FRP material for infrastructure market. Proceedings 4th International Conference Advanced Composite Materials in Bridges and Structures (ACMBS-IV), 20-23 July, 2024, Calgary, Canada.

Serbescu, A., Guadagnini, M., & Pilakoutas, K. (2015). Mechanical Characterization of Basalt FRP Rebars and Long-Term Strength Predictive Model. Journal of Composites for Construction, 19(2), 143. doi:10.1061/(asce)cc.1943-5614.0000497.

Vincent, P., Ahmed, E., & Benmokrane, B. (2013). Characterization of basalt fiber-reinforced polymer (BFRP) reinforcing bars for concrete structures. Proceedings of the 3rd Specialty Conference on Material Engineering & Applied Mechanics, 29 May-1 June, Montreal, Canada.

Elgabbas, F., Ahmed, E. A., & Benmokrane, B. (2015). Physical and mechanical characteristics of new basalt-FRP bars for reinforcing concrete structures. Construction and Building Materials, 95, 623–635. doi:10.1016/j.conbuildmat.2015.07.036.

Tomlinson, D., & Fam, A. (2015). Performance of Concrete Beams Reinforced with Basalt FRP for Flexure and Shear. Journal of Composites for Construction, 19(2), 712. doi:10.1061/(asce)cc.1943-5614.0000491.

Banibayat, P., & Patnaik, A. (2015). Creep Rupture Performance of Basalt Fiber-Reinforced Polymer Bars. Journal of Aerospace Engineering, 28(3), 4014074. doi:10.1061/(asce)as.1943-5525.0000391.

Patnaik, A. (2009). Applications of basalt fiber reinforced polymer (BFRP) reinforcement for transportation infrastructure. Developing a Research Agenda for Transportation Infrastructure -TRB, November 2009, 1-5.

Brik, V. (2003). Advanced concept concrete using basalt fiber/BF composite rebar reinforcement. Final Report for Highway-IDEA Project 86, Transportation Research Broad, Washington, United States.

Sim, J., Park, C., & Moon, D. Y. (2005). Characteristics of basalt fiber as a strengthening material for concrete structures. Composites Part B: Engineering, 36(6–7), 504–512. doi:10.1016/j.compositesb.2005.02.002.

Benmokrane, B., Elgabbas, F., Ahmed, E. A., & Cousin, P. (2015). Characterization and Comparative Durability Study of Glass/Vinylester, Basalt/Vinylester, and Basalt/Epoxy FRP Bars. Journal of Composites for Construction, 19(6), 34. doi:10.1061/(asce)cc.1943-5614.0000564.

Halim, N. H. F. A., Alih, S. C., Vafaei, M., Baniahmadi, M., & Fallah, A. (2017). Durability of fibre reinforced polymer under aggressive environment and severe loading: A review. International Journal of Applied Engineering Research, 12(22), 12519–12533.

Wei, B., Cao, H., & Song, S. (2010). Environmental resistance and mechanical performance of basalt and glass fibers. Materials Science and Engineering: A, 527(18–19), 4708–4715. doi:10.1016/j.msea.2010.04.021.

Gu, C. P., Ye, G., & Sun, W. (2015). Ultrahigh performance concrete-properties, applications and perspectives. Science China Technological Sciences, 58(4), 587–599. doi:10.1007/s11431-015-5769-4.

Ahmed, E. A., Benmokrane, B., & Sansfaçon, M. (2017). Case Study: Design, Construction, and Performance of the La Chancelière Parking Garage’s Concrete Flat Slabs Reinforced with GFRP Bars. Journal of Composites for Construction, 21(1), 68. doi:10.1061/(asce)cc.1943-5614.0000656.

Sagar, B., & Sivakumar, M. V. N. (2021). Performance evaluation of basalt fibre-reinforced polymer rebars in structural concrete members–a review. Innovative Infrastructure Solutions, 6(2), 423. doi:10.1007/s41062-020-00452-2.

Afroughsabet, V., Biolzi, L., & Ozbakkaloglu, T. (2016). High-performance fiber-reinforced concrete: a review. Journal of Materials Science, 51(14), 6517–6551. doi:10.1007/s10853-016-9917-4.

Christian, A., & Chye, G. O. K. (2014). Performance of fiber reinforced high-strength concrete with steel sandwich composite system as blast mitigation panel. Procedia Engineering, 95(9), 150–157. doi:10.1016/j.proeng.2014.12.174.

Ezzsteel. (2025). EZZ STEEL, Cairo, Egypt. Available online: https://www.ezzsteel.com/ (accessed on March 2025).

Armastek (2025). Armastek and imported by Fiber Reinforcement Industries Company. Armastek, Johannesburg, South Africa. Available online: https://armastek-za.com/ (accessed on March 2025).

ABFC. (2025). Arab Basalt Fiber Company, Fujairah, United Arab Emirates. Available online: https://arabbasaltfiber.com/ (accessed on March 2025).

Dassault Systems. (2017). Abaqus/CAE User’s Manual. Dassault Systems, Vélizy-Villacoublay, France.

Ali, A. H., Gouda, A., Mohamed, H. M., Rabie, M. H., & Benmokrane, B. (2020). Nonlinear finite elements modeling and experiments of FRP-reinforced concrete piles under shear loads. Structures, 28, 106–119. doi:10.1016/j.istruc.2020.08.047.


Full Text: PDF

DOI: 10.28991/CEJ-2025-011-04-017

Refbacks

  • There are currently no refbacks.




Copyright (c) 2025 Mona Badawi, Mahmuod Awad, Marwa Badawi

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message