Advanced Digital Modeling of Stress–Strain Behavior in Rock Masses to Ensure Stability of Underground Mine Workings
Abstract
Doi: 10.28991/CEJ-2025-011-03-014
Full Text: PDF
Keywords
References
Diomin, V. F., Khalikova, E. R., Diomina, T. V., & Zhurov, V. V. (2019). Studying coal seam bedding tectonic breach impact on supporting parameters of mine workings with roof bolting. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 2019(5), 16–21. doi:10.29202/nvngu/2019-5/5.
Budi, G., Rao, K. N., & Mohanty, P. (2023). Field and numerical modelling on the stability of underground strata in longwall workings. Energy Geoscience, 4(1), 1–12. doi:10.1016/j.engeos.2022.07.003.
Mazaira, A., & Konicek, P. (2015). Intense rockburst impacts in deep underground construction and their prevention. Canadian Geotechnical Journal, 52(10), 1426–1439. doi:10.1139/cgj-2014-0359.
Saeidi, A., Cloutier, C., Kamalibandpey, A., & Shahbazi, A. (2022). Evaluation of the Effect of Geomechanical Parameters and In Situ Stress on Tunnel Response Using Equivalent Mohr-Coulomb and Generalized Hoek-Brown Criteria. Geosciences (Switzerland), 12(7), 262. doi:10.3390/geosciences12070262.
Zholmagambetov, N., Khalikova, E., Demin, V., Balabas, A., Abdrashev, R., & Suiintayeva, S. (2023). Ensuring a safe geomechanical state of the rock mass surrounding the mine workings in the Karaganda coal basin, Kazakhstan. Mining of Mineral Deposits, 17(1), 74–83. doi:10.33271/mining17.01.074.
Kashan, A. J., Lay, J., Wiewiora, A., & Bradley, L. (2022). The innovation process in mining: Integrating insights from innovation and change management. Resources Policy, 76, 102575. doi:10.1016/j.resourpol.2022.102575.
Chu, H., Li, G., Liu, Z., Liu, X., Wu, Y., & Yang, S. (2022). Multi-Level Support Technology and Application of Deep Roadway Surrounding Rock in the Suncun Coal Mine, China. Materials, 15(23), 8665. doi:10.3390/ma15238665.
Wang, P., Fu, Y., Liu, C., Zhou, X., & Cai, M. (2024). Directional fracture patterns of excavated jointed rock mass within rough discrete fractures. Engineering Fracture Mechanics, 309, 110419. doi:10.1016/j.engfracmech.2024.110419.
Shi, Z., Zhao, H., Qin, B., Liang, B., & Hao, J. (2024). Experimental study on rock strata movement and stope stress distribution law under mining height regulation. Energy Science and Engineering, 12(4), 1531–1550. doi:10.1002/ese3.1689.
Wu, X., Wang, S., Wang, J., Wang, Z., Zhao, S., & Bu, Q. (2022). Research on the Control of Mining Instability and Disaster in Crisscross Roadways. Sustainability (Switzerland), 14(23), 15821. doi:10.3390/su142315821.
Huang, W., Liu, S., Gao, M., Hou, T., Wang, X., Zhao, T., Sui, L., & Xie, Z. (2023). Improvement of Reinforcement Performance and Engineering Application of Small Coal Pillars Arranged in Double Roadways. Sustainability (Switzerland), 15(1), 292. doi:10.3390/su15010292.
Lozynskyi, V., Saik, P., Petlovanyi, M., Sai, K., & Malanchuk, Y. (2018). Analytical research of the stress-deformed state in the rock massif around faulting. International Journal of Engineering Research in Africa, 35(2), 77–88. doi:10.4028/www.scientific.net/JERA.35.77.
Xiong, Y., Kong, D., Wen, Z., Wu, G., & Liu, Q. (2022). Analysis of coal face stability of lower coal seam under repeated mining in close coal seams group. Scientific Reports, 12(1), 1–14. doi:10.1038/s41598-021-04410-5.
Nehrii, S., Nehrii, T., Zolotarova, O., & Volkov, S. (2021). Investigation of the geomechanical state of soft adjoining rocks under protective constructions. Rudarsko Geolosko Naftni Zbornik, 36(4), 61–71. doi:10.17794/rgn.2021.4.6.
Zhao, K., & Jia, S. (2023). An FDM-Based Dynamic Zoning Method for Disturbed Rock Masses above a Longwall Mining Panel. Applied Sciences (Switzerland), 13(7), 4336. doi:10.3390/app13074336.
Adach-Pawelus, K. (2022). Back-Calculation Method for Estimation of Geomechanical Parameters in Numerical Modeling Based on In-Situ Measurements and Statistical Methods. Energies, 15(13), 4729. doi:10.3390/en15134729.
Lama, B., & Momayez, M. (2023). Review of Non-Destructive Methods for Rock Bolts Condition Evaluation. Mining, 3(1), 106–120. doi:10.3390/mining3010007.
Demin, W. F., Demina, T. I., Kaynazarov, A. S., & Kaynazarova, A. S. (2018). Evaluation of the workings technological schemes effectiveness to increase the stability of their contours. Sustainable Development of Mountain Territories, 10(4), 606–616. doi:10.21177/1998-4502-2018-10-4-606-616.
Li, X., Li, H., Liu, K., Zhang, Q., Zou, F., Huang, L., & Zhao, J. (2017). Dynamic properties and fracture characteristics of rocks subject to impact loading. Yanshilixue Yu Gongcheng Xuebao/Chinese Journal of Rock Mechanics and Engineering, 36(10), 2393–2405. doi:10.13722/j.cnki.jrme.2017.0539.
Bondarenko, V., Symanovych, G., & Koval, O. (2012). The mechanism of over-coal thin-layered massif deformation of weak rocks in a longwall. Geomechanical Processes during Underground Mining, CRC Press, Boca Raton, United States. doi:10.1201/b13157-9.
Dyomin, V. F., Batyrkhanova, A. T., Tomilov, A. N., Zhumabekova, A. Y., & Abekov, U. E. (2019). Developing technological schemes of driving workings with controlled resistance of contours. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 2019(3), 22–28. doi:10.29202/nvngu/2019-3/2.
Yang, H., Han, C., Zhang, N., Pan, D., & Xie, Z. (2020). Research and Application of Low Density Roof Support Technology of Rapid Excavation for Coal Roadway. Geotechnical and Geological Engineering, 38(1), 389–401. doi:10.1007/s10706-019-01029-2.
Sotskov, V., & Saleev, I. (2013). Investigation of the rock massif stress strain state in conditions of the drainage drift overworking. Annual Scientific-Technical Colletion - Mining of Mineral Deposits 2013, 197–201. doi:10.1201/b16354-35.
Shashenko, A., Gapieiev, S., & Solodyankin, A. (2009). Numerical simulation of the elastic-plastic state of rock mass around horizontal workings. Archives of Mining Sciences, 54(2), 341–348.
Zhao, X., Zeng, N., Deng, L., Zhu, Q., Zhao, Y., & Yang, S. (2022). Optimization Drift Support Design Based on Engineering Geological and Geotechnical Analysis in Deep Hard-Rock Mine: A Case Study. Applied Sciences (Switzerland), 12(20), 10224. doi:10.3390/app122010224.
Nemova, N. A., Tahanov, D., Hussan, B., & Zhumabekova, A. (2020). Technological solutions development for mining adjacent rock mass and pit reserves taking into account geomechanical assessment of the deposit. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 2020(2), 17–23. doi:10.33271/nvngu/2020-2/017.
Smoliński, A., Malashkevych, D., Petlovanyi, M., Rysbekov, K., Lozynskyi, V., & Sai, K. (2022). Research into Impact of Leaving Waste Rocks in the Mined-Out Space on the Geomechanical State of the Rock Mass Surrounding the Longwall Face. Energies, 15(24), 9522. doi:10.3390/en15249522.
Hao, Y., & Hao, H. (2013). Numerical investigation of the dynamic compressive behaviour of rock materials at high strain rate. Rock Mechanics and Rock Engineering, 46(2), 373–388. doi:10.1007/s00603-012-0268-4.
Jing, L. (2003). A review of techniques, advances and outstanding issues in numerical modelling for rock mechanics and rock engineering. International Journal of Rock Mechanics and Mining Sciences, 40(3), 283–353. doi:10.1016/S1365-1609(03)00013-3.
Hajiabdolmajid, V., Kaiser, P. K., & Martin, C. D. (2002). Modelling brittle failure of rock. International Journal of Rock Mechanics and Mining Sciences, 39(6), 731–741. doi:10.1016/S1365-1609(02)00051-5.
DOI: 10.28991/CEJ-2025-011-03-014
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Alexey Kalinin

This work is licensed under a Creative Commons Attribution 4.0 International License.