Advanced Digital Modeling of Stress–Strain Behavior in Rock Masses to Ensure Stability of Underground Mine Workings

Vladimir Demin, Alexey Kalinin, Nadezhda Tomilova, Aleksandr Tomilov, Assem Akpanbayeva, Denis Shokarev, Anton Popov

Abstract


This study focuses on optimizing underground support systems through advanced numerical modeling and geomechanical assessment. The research aims to refine reinforcement parameters for underground mine workings by analyzing the stress-strain behavior of rock masses using Rocscience RS2 software. The study integrates geological and geotechnical data, including field observations and numerical simulations, to enhance the accuracy of support system designs. The methodology is based on the finite element method (FEM) and the Hoek–Brown softening model, allowing the identification of plastic deformation zones and stress redistribution patterns. The results confirm that maximum stress increases by 35–40% for every 100 m of depth, necessitating enhanced reinforcement. The study evaluates hybrid support systems, specifically steel-polymer bolts with shotcrete, demonstrating a 15% reduction in plastic deformations compared to conventional methods. The findings highlight the importance of continuous geotechnical monitoring and adaptive reinforcement strategies to ensure stability in highly fractured rock masses. The proposed approach provides a more precise prediction of excavation stability, contributing to the development of safer and more efficient underground mining practices. Future research may include the integration of intelligent monitoring systems equipped with real-time sensors to further optimize support strategies and long-term stability assessments.

 

Doi: 10.28991/CEJ-2025-011-03-014

Full Text: PDF


Keywords


Numerical Modeling of the Stress State; Finite Element Method; Hybrid Support Systems; Support System Optimization; Rock Mass Geomechanics; Geological Strength Index; Rock Mechanics; Mine Workings Safety.

References


Diomin, V. F., Khalikova, E. R., Diomina, T. V., & Zhurov, V. V. (2019). Studying coal seam bedding tectonic breach impact on supporting parameters of mine workings with roof bolting. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 2019(5), 16–21. doi:10.29202/nvngu/2019-5/5.

Budi, G., Rao, K. N., & Mohanty, P. (2023). Field and numerical modelling on the stability of underground strata in longwall workings. Energy Geoscience, 4(1), 1–12. doi:10.1016/j.engeos.2022.07.003.

Mazaira, A., & Konicek, P. (2015). Intense rockburst impacts in deep underground construction and their prevention. Canadian Geotechnical Journal, 52(10), 1426–1439. doi:10.1139/cgj-2014-0359.

Saeidi, A., Cloutier, C., Kamalibandpey, A., & Shahbazi, A. (2022). Evaluation of the Effect of Geomechanical Parameters and In Situ Stress on Tunnel Response Using Equivalent Mohr-Coulomb and Generalized Hoek-Brown Criteria. Geosciences (Switzerland), 12(7), 262. doi:10.3390/geosciences12070262.

Zholmagambetov, N., Khalikova, E., Demin, V., Balabas, A., Abdrashev, R., & Suiintayeva, S. (2023). Ensuring a safe geomechanical state of the rock mass surrounding the mine workings in the Karaganda coal basin, Kazakhstan. Mining of Mineral Deposits, 17(1), 74–83. doi:10.33271/mining17.01.074.

Kashan, A. J., Lay, J., Wiewiora, A., & Bradley, L. (2022). The innovation process in mining: Integrating insights from innovation and change management. Resources Policy, 76, 102575. doi:10.1016/j.resourpol.2022.102575.

Chu, H., Li, G., Liu, Z., Liu, X., Wu, Y., & Yang, S. (2022). Multi-Level Support Technology and Application of Deep Roadway Surrounding Rock in the Suncun Coal Mine, China. Materials, 15(23), 8665. doi:10.3390/ma15238665.

Wang, P., Fu, Y., Liu, C., Zhou, X., & Cai, M. (2024). Directional fracture patterns of excavated jointed rock mass within rough discrete fractures. Engineering Fracture Mechanics, 309, 110419. doi:10.1016/j.engfracmech.2024.110419.

Shi, Z., Zhao, H., Qin, B., Liang, B., & Hao, J. (2024). Experimental study on rock strata movement and stope stress distribution law under mining height regulation. Energy Science and Engineering, 12(4), 1531–1550. doi:10.1002/ese3.1689.

Wu, X., Wang, S., Wang, J., Wang, Z., Zhao, S., & Bu, Q. (2022). Research on the Control of Mining Instability and Disaster in Crisscross Roadways. Sustainability (Switzerland), 14(23), 15821. doi:10.3390/su142315821.

Huang, W., Liu, S., Gao, M., Hou, T., Wang, X., Zhao, T., Sui, L., & Xie, Z. (2023). Improvement of Reinforcement Performance and Engineering Application of Small Coal Pillars Arranged in Double Roadways. Sustainability (Switzerland), 15(1), 292. doi:10.3390/su15010292.

Lozynskyi, V., Saik, P., Petlovanyi, M., Sai, K., & Malanchuk, Y. (2018). Analytical research of the stress-deformed state in the rock massif around faulting. International Journal of Engineering Research in Africa, 35(2), 77–88. doi:10.4028/www.scientific.net/JERA.35.77.

Xiong, Y., Kong, D., Wen, Z., Wu, G., & Liu, Q. (2022). Analysis of coal face stability of lower coal seam under repeated mining in close coal seams group. Scientific Reports, 12(1), 1–14. doi:10.1038/s41598-021-04410-5.

Nehrii, S., Nehrii, T., Zolotarova, O., & Volkov, S. (2021). Investigation of the geomechanical state of soft adjoining rocks under protective constructions. Rudarsko Geolosko Naftni Zbornik, 36(4), 61–71. doi:10.17794/rgn.2021.4.6.

Zhao, K., & Jia, S. (2023). An FDM-Based Dynamic Zoning Method for Disturbed Rock Masses above a Longwall Mining Panel. Applied Sciences (Switzerland), 13(7), 4336. doi:10.3390/app13074336.

Adach-Pawelus, K. (2022). Back-Calculation Method for Estimation of Geomechanical Parameters in Numerical Modeling Based on In-Situ Measurements and Statistical Methods. Energies, 15(13), 4729. doi:10.3390/en15134729.

Lama, B., & Momayez, M. (2023). Review of Non-Destructive Methods for Rock Bolts Condition Evaluation. Mining, 3(1), 106–120. doi:10.3390/mining3010007.

Demin, W. F., Demina, T. I., Kaynazarov, A. S., & Kaynazarova, A. S. (2018). Evaluation of the workings technological schemes effectiveness to increase the stability of their contours. Sustainable Development of Mountain Territories, 10(4), 606–616. doi:10.21177/1998-4502-2018-10-4-606-616.

Li, X., Li, H., Liu, K., Zhang, Q., Zou, F., Huang, L., & Zhao, J. (2017). Dynamic properties and fracture characteristics of rocks subject to impact loading. Yanshilixue Yu Gongcheng Xuebao/Chinese Journal of Rock Mechanics and Engineering, 36(10), 2393–2405. doi:10.13722/j.cnki.jrme.2017.0539.

Bondarenko, V., Symanovych, G., & Koval, O. (2012). The mechanism of over-coal thin-layered massif deformation of weak rocks in a longwall. Geomechanical Processes during Underground Mining, CRC Press, Boca Raton, United States. doi:10.1201/b13157-9.

Dyomin, V. F., Batyrkhanova, A. T., Tomilov, A. N., Zhumabekova, A. Y., & Abekov, U. E. (2019). Developing technological schemes of driving workings with controlled resistance of contours. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 2019(3), 22–28. doi:10.29202/nvngu/2019-3/2.

Yang, H., Han, C., Zhang, N., Pan, D., & Xie, Z. (2020). Research and Application of Low Density Roof Support Technology of Rapid Excavation for Coal Roadway. Geotechnical and Geological Engineering, 38(1), 389–401. doi:10.1007/s10706-019-01029-2.

Sotskov, V., & Saleev, I. (2013). Investigation of the rock massif stress strain state in conditions of the drainage drift overworking. Annual Scientific-Technical Colletion - Mining of Mineral Deposits 2013, 197–201. doi:10.1201/b16354-35.

Shashenko, A., Gapieiev, S., & Solodyankin, A. (2009). Numerical simulation of the elastic-plastic state of rock mass around horizontal workings. Archives of Mining Sciences, 54(2), 341–348.

Zhao, X., Zeng, N., Deng, L., Zhu, Q., Zhao, Y., & Yang, S. (2022). Optimization Drift Support Design Based on Engineering Geological and Geotechnical Analysis in Deep Hard-Rock Mine: A Case Study. Applied Sciences (Switzerland), 12(20), 10224. doi:10.3390/app122010224.

Nemova, N. A., Tahanov, D., Hussan, B., & Zhumabekova, A. (2020). Technological solutions development for mining adjacent rock mass and pit reserves taking into account geomechanical assessment of the deposit. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 2020(2), 17–23. doi:10.33271/nvngu/2020-2/017.

Smoliński, A., Malashkevych, D., Petlovanyi, M., Rysbekov, K., Lozynskyi, V., & Sai, K. (2022). Research into Impact of Leaving Waste Rocks in the Mined-Out Space on the Geomechanical State of the Rock Mass Surrounding the Longwall Face. Energies, 15(24), 9522. doi:10.3390/en15249522.

Hao, Y., & Hao, H. (2013). Numerical investigation of the dynamic compressive behaviour of rock materials at high strain rate. Rock Mechanics and Rock Engineering, 46(2), 373–388. doi:10.1007/s00603-012-0268-4.

Jing, L. (2003). A review of techniques, advances and outstanding issues in numerical modelling for rock mechanics and rock engineering. International Journal of Rock Mechanics and Mining Sciences, 40(3), 283–353. doi:10.1016/S1365-1609(03)00013-3.

Hajiabdolmajid, V., Kaiser, P. K., & Martin, C. D. (2002). Modelling brittle failure of rock. International Journal of Rock Mechanics and Mining Sciences, 39(6), 731–741. doi:10.1016/S1365-1609(02)00051-5.


Full Text: PDF

DOI: 10.28991/CEJ-2025-011-03-014

Refbacks

  • There are currently no refbacks.




Copyright (c) 2025 Alexey Kalinin

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message