Piles Pullout Enhancement Subjected to Inclined Loads
Downloads
This study focuses on the experimental and numerical analysis of pullout resistance for a single pile subjected to inclined loads in sandy soil, both before and after improvement with asphalt enhancement. The sandy soil, characterized by low cohesion, poses significant challenges for foundation stability under vertical and inclined loading conditions. Pullout tests were conducted experimentally at angles of 0°, 30°, 45°, 60°, and 90° for both vertical and horizontal components of inclined loads using a custom-designed testing setup. Cutback asphalt was introduced as an improvement agent. The experimental results revealed a significant reduction in displacement up to 62% and an improvement in pullout resistance for the asphalt-treated soil up to 55% and 72% for vertical and horizontal load directions, respectively. PLAXIS software was validated through numerical modeling, which confirmed the improved load-displacement behavior and stress distribution. The asphalt enhancement demonstrated an improvement in pullout resistance, underscoring its effectiveness in creating a cohesive soil matrix that enhances load transmission and reduces void ratios. This research provides valuable insights into the load’s inclination and improvement with angle variations; the pullout capacity enhanced significantly with the inclination angle with vertical due to the formation of a bigger failure zone, thus offering practical solutions for improving the performance of pile-supported foundations in weak sandy soils under challenging inclined load conditions.
Downloads
[1] Salgado, R. (2022). The Engineering of Foundations, Slopes and Retaining Structures. CRC Press, Boca Raton, United States. doi:10.1201/b22079.
[2] Lombardi, D. (2014). Dynamics of pile-supported structures in seismically liquefiable soils. Ph.D. Thesis, University of Bristol, Bristol, United Kingdom.
[3] Varaksin, S., Hamidi, B., Huybrechts, N., & Denies, N. (2016). Ground improvement vs. pile foundations. ISSMGE - ETC 3 International Symposium on Design of Piles in Europe, 28-29 April, 2016, Leuven, Belgium.
[4] Zeini, H. A., Al-Jeznawi, D., Imran, H., Bernardo, L. F. A., Al-Khafaji, Z., & Ostrowski, K. A. (2023). Random Forest Algorithm for the Strength Prediction of Geopolymer Stabilized Clayey Soil. Sustainability (Switzerland), 15(2), 1408. doi:10.3390/su15021408.
[5] Asphalt Institute. (1994). Performance graded asphalt binder specification and testing. Asphalt Institute, Kentucky, United States.
[6] Bustillo Revuelta, M. (2021). Bituminous Materials. In: Construction Materials. Springer Textbooks in Earth Sciences, Geography and Environment. Springer, Cham, Switzerland. doi:10.1007/978-3-030-65207-4_14.
[7] Aldaeef, A. A., & Rayhani, M. T. (2020). Load transfer of pile foundations in frozen and unfrozen soft clay. International Journal of Geotechnical Engineering, 14(6), 653–664. doi:10.1080/19386362.2019.1667127.
[8] Biriukova, E. (2020). Foundation of the future: Pile Foundations of High-Rise and Offshore Buildings. Bachelor Thesis, HAMK Häme University of Applied Sciences, Hämeenlinna, Finland.
[9] Anand, V., & Satish Kumar, S. R. (2018). Seismic Soil-structure Interaction: A State-of-the-Art Review. Structures, 16, 317–326. doi:10.1016/j.istruc.2018.10.009.
[10] Franza, A., & Sheil, B. (2021). Pile groups under vertical and inclined eccentric loads: Elastoplastic modelling for performance based design. Computers and Geotechnics, 135, 104092. doi:10.1016/j.compgeo.2021.104092.
[11] Heidari, M., Jahanandish, M., Naggar, H. El, & Ghahramani, A. (2014). Nonlinear cyclic behavior of laterally loaded pile in cohesive soil. Canadian Geotechnical Journal, 51(2), 129–143. doi:10.1139/cgj-2013-0099.
[12] Gui, F., Kong, J., Feng, D., Qu, X., Zhu, F., & You, Y. (2021). Uplift resistance capacity of anchor piles used in marine aquaculture. Scientific Reports, 11(1), 20321. doi:10.1038/s41598-021-99817-5.
[13] Hu, C., Chen, J., Leung, C. F., Chow, Y. K., & Li, Z. (2021). Pull-out mechanism of horizontal and inclined plate anchors in normally consolidated clay. Journal of Marine Science and Engineering, 9(10), 1103. doi:10.3390/jmse9101103.
[14] Zhou, M., Yang, N., Tian, Y., & Zhang, X. (2023). Inclined Pullout Capacity of Suction Anchors in Clay over Silty Sand. Journal of Geotechnical and Geoenvironmental Engineering, 149(6), 4023030. doi:10.1061/jggefk.gteng-11074.
[15] Prakash, S., & Sharma, H. D. (1991). Pile foundations in engineering practice. John Wiley & Sons, Hoboken, United States.
[16] Al-Saidi, A. A. G. (2016). Correction Factor for Methods of Installation of Piles Group in Sandy Iraqi Soils. Journal of Engineering, 22(9), 172–181. doi:10.31026/j.eng.2016.09.11.
[17] Abdulameer, H. Q. K. (2023). Studying the Behavior of Asphalt Stabilized Gepseous Soil for Earth Embankment Model. Journal of Engineering, 20(05), 25–43. doi:10.31026/j.eng.2014.05.02.
[18] Sarsam, S. I., Al- Saidi, A. A., & Al – Khayat, B. H. (2011). Implementation of Gypseous Soil-Asphalt Stabilization Technique for Base Course Construction. Journal of Engineering, 17(05), 1066–1076. doi:10.31026/j.eng.2011.05.03.
[19] Hanna, A., Ayadat, T., & Sabry, M. (2007). Pullout resistance of single vertical shallow helical and plate anchors in sand. Geotechnical and Geological Engineering, 25(5), 559–573. doi:10.1007/s10706-007-9129-4.
[20] Ibrahim, A. A., & Karkush, M. O. (2023). The Efficiency of Belled Piles in Multi-Layers Soils Subjected to Axial Compression and Pullout Loads: Review. Journal of Engineering, 29(09), 166–183. doi:10.31026/j.eng.2023.09.12.
[21] Meyerhof, G. G., & Yalcin, A. S. (1994). Bearing capacity of flexible batter piles under eccentric and inclined loads in layered soil. Canadian Geotechnical Journal, 31(4), 583–590. doi:10.1139/t94-068.
[22] Sarsam, S. I., Alsaidi, A. A., & Alzoba, O. M. (2014). Impact of Asphalt Stabilization on Deformation Behavior of Reinforced Soil Embankment Model under Cyclic Loading. Journal of Engineering Geology and Hydrogeology, 2(4), 46. doi:10.12966/jegh.11.01.2014.
[23] Albusoda, B. S., & Alsaddi, A. F. (2017). Experimental study on performance of laterally loaded plumb and battered piles in layered sand. Journal of Engineering, 23(9), 23–37. doi:10.31026/j.eng.2017.09.02.
[24] Lee, P. Y., & Gilbert, L. W. (1980). The behavior of steel rocket shaped pile. Symposium on Deep Foundations. American Society of Civil Engineers (ASCE), Virginia, United States.
[25] Peng, J. R., Rouainia, M., & Clarke, B. G. (2010). Finite element analysis of laterally loaded fin piles. Computers and Structures, 88(21–22), 1239–1247. doi:10.1016/j.compstruc.2010.07.002.
[26] Yang, M. hui, Deng, B., & Zhao, M. hua. (2019). Experimental and theoretical studies of laterally loaded single piles in slopes. Journal of Zhejiang University: Science A, 20(11), 838–851. doi:10.1631/jzus.A1900318.
[27] Al-Nadaf, H. Q. (2013). Effect of Water Absorption on the Behavior of Asphalt Stabilized Gypseous Soil. Master Thesis, University of Baghdad, Baghdad, Iraq.
[28] Subair, A. H., & Aljorany, A. N. (2021). Shaft Resistance of Long (Flexible) Piles Considering Strength Degradation. Journal of Engineering, 27(3), 54–66. doi:10.31026/j.eng.2021.03.04.
[29] Mostafa, A. E., Eisa, M., & Ibrahim, M. F. (2024). Effect of stabilizing subgrade layer using various additives on the flexible pavement design. Innovative Infrastructure Solutions, 9(5), 147. doi:10.1007/s41062-024-01430-8.
[30] Sarsam, S., & W. Ibrahim, S. (2008). Contribution of Liquid Asphalt in Shear Strength and Rebound Consolidation Behaviour of Gypseous Soil. Engineering and Technology Journal, 26(4), 484–495. doi:10.30684/etj.29.4.10
[31] Fattah, M. Y., Obead, I. H., & Omran, H. A. (2022). A study on leaching of collapsible gypseous soils. International Journal of Geotechnical Engineering, 16(1), 44–54. doi:10.1080/19386362.2019.1647664.
[32] Andavan, S., & Maneesh Kumar, B. (2020). Case study on soil stabilization by using bitumen emulsions - A review. Materials Today: Proceedings, 22, 1200–1202. doi:10.1016/j.matpr.2019.12.121.
[33] Nouaye Kenmogne, B. E. (2020). Geotechnical characterization of the US product AggreBind for use in road construct. Master Thesis, University of Padua, Padua, Italy.
[34] Cao, D., Fan, L., Huang, R., & Guo, C. (2024). Investigation of the Mechanical Properties of Reinforced Calcareous Sand Using a Permeable Polyurethane Polymer Adhesive. Materials, 17(21), 5277. doi:10.3390/ma17215277.
[35] Darshan, N., & Kataware, A. V. (2024). Review on Porous Asphalt Pavements: A Comprehensive Resolution for Stormwater Management and Applications in Current Built Environment. International Journal of Pavement Research and Technology, 1–25,. doi:10.1007/s42947-024-00444-w.
[36] Li, P., Shi, M., Xia, Y., Xue, B., Zhang, C., Chen, J., Wang, J., Pan, Y., Wang, C., & Han, B. (2023). Study on bonding performance and load transfer model between polyurethane anchor bolts and silty soil. Construction and Building Materials, 384, 131335. doi:10.1016/j.conbuildmat.2023.131335.
[37] Khan, I. A. (1976). Low-cost asphalt pavements and bases employing liquid asphalts. Master Thesis, Kansas State University, Manhattan, United States.
[38] Oluyemi-Ayibiowu, B. D. (2019). Stabilization of lateritic soils with asphalt- emulsion. Nigerian Journal of Technology, 38(3), 603. doi:10.4314/njt.v38i3.9.
[39] Shakir, Z. H. (2017). Improvement of Gypseous Soil Using Cutback Asphalt. Journal of Engineering, 23(10), 44–61. doi:10.31026/j.eng.2017.10.04.
[40] Hussain, A. J., Salman, A. D., & Mohammad, . Nazar Hassan. (2014). Effect of Pile and Load Inclination on the Pile Resistance In both Compression and Tension. Wasit Journal of Engineering Sciences, 2(1), 11–29. doi:10.31185/ejuow.vol2.iss1.21.
[41] Mukherjee, S., Kumar, L., Choudhary, A. K., & Babu, G. L. S. (2021). Pullout resistance of inclined anchors embedded in geogrid reinforced sand. Geotextiles and Geomembranes, 49(5), 1368–1379. doi:10.1016/j.geotexmem.2021.05.009.
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.