Assessing Sediment Transport and Shoreline Dynamics in High-Energy Tropical Coasts
Downloads
This research examines coastal erosion in North Galesong, Indonesia, by validating longshore sediment transport (LST) equations and predicting shoreline changes over ten years. To evaluate sediment movement and coastline alterations, it integrates field data on sediment grain size and wave characteristics with numerical modeling techniques, including the CERC equation and finite difference methods. Sieve analysis revealed a range of sediment textures (D50: 0.17–0.65 mm), predominantly medium-fine sand. Wave analysis indicated a dominance of moderate energy southwesterly waves (1.5 m height, 6.39 s period) that aid sediment transport. The empirical LST models, calibrated with local data, closely matched numerical simulations (error <20%), predicting an annual net northward sediment transport of 406,869 m³. Shoreline analysis across 15 segments showed significant spatial variability: severe erosion occurred in Cell 4 (Δy = -0.82 m), while Cell 3 saw accretion (Δy = +0.68 m), influenced by wave direction, sediment supply, and coastal morphology. This study underscores the value of hybrid empirical-numerical methods in data-scarce regions and emphasizes the need for local model calibration to enhance coastal resilience. The findings inform sustainable management practices, promoting adaptive strategies to address sediment imbalances and hydrodynamic changes due to climate factors.
Downloads
[1] Sui, L., Wang, J., Yang, X., & Wang, Z. (2020). Spatial-temporal characteristics of coastline changes in Indonesia from 1990 to 2018. Sustainability (Switzerland), 12(8), 1–28. doi:10.3390/SU12083242.
[2] Schernewski, G. (2016). Integrated Coastal Zone Management. In Encyclopedia of Earth Sciences Series. Springer, Heidelberg, Germany. doi:10.1007/978-94-007-6238-1_183.
[3] Ibrahim, A. S. A., El-Molla, A. M., & Ahmed, H. G. I. (2024). Impacts of Coastal Structures on Sediment Transport: A Case Study of Damietta, Egypt. Nase More, 71(2), 45–53. doi:10.17818/NM/2024/2.1.
[4] Xie, D., Hughes, Z., FitzGerald, D., Tas, S., Asik, T. Z., & Fagherazzi, S. (2024). Longshore Sediment Transport Across a Tombolo Determined by Two Adjacent Circulation Cells. Journal of Geophysical Research: Earth Surface, 129(10), 1. doi:10.1029/2024JF007709.
[5] Firdaus, F., Chaerul, M., & Gusty, S. (2022). Analysis of vulnerability level of beach abration disaster in the District of North Galesong, Takalar Regency. Astonjadro, 11(3), 576. doi:10.32832/astonjadro.v11i3.7195.
[6] Noujas, V., Kankara, R., Raju Alluri, S. K., & Murthy, M. V. R. (2024). Longshore Sediment Transport Rate for Different Energy Regime Coast along the East Coast of India. Journal of Coastal Research, 113(sp1), 110–114,. doi:10.2112/jcr-si113-022.1.
[7] Wang, C., Yang, G., Li, C., Zhao, C., Zhu, J., & Ma, X. (2024). The response of sediment transport and morphological evolution to storms with different characteristics. Science of the Total Environment, 946(173987), 1. doi:10.1016/j.scitotenv.2024.173987.
[8] CERC. (1984). Shore Protection Manual. US Army Corps of Engineers, Coastal Engineering Research Center, Washington United States.
[9] Komar, P. D., & Inman, D. L. (1970). Longshore sand transport on beaches. Journal of Geophysical Research, 75(30), 5914–5927. doi:10.1029/jc075i030p05914.
[10] Pananrangi, A. I. (2015). Land Utilization in Galesong Coastal Area Based on Abrasion Disaster Risk Analysis. Plano Madani: Jurnal Perencanaan Wilayah Dan Kota, 4(2), 22–31. (In Indonesian).
[11] Prasetyo, A. F., Rachman, T., & Paotonan, C. (2020). Identification of Coastal Damage in the Coastal Area of North Galesong District, Takalar Regency, South Sulawesi. Riset Sains Dan Teknologi Kelautan, 3(1), 26–31. doi:10.62012/sensistek.v3i1.13236. (In Indonesian).
[12] Zhiddiq, S., Rauf, B., Yusuf, M., Maddatuang, M., & Mannan, A. (2023). Geospatial Information on Abrasion Disaster Risk in South Sulawesi. LaGeografia, 21(3), 321. doi:10.35580/lageografia.v21i3.51200. (In Indonesian).
[13] Hastuti, A. W., Ismail, N. P., & Nagai, M. (2023). Coastline change detection using high-resolution satellite images: A case study in Amurang Coasts, South Minahasa, North Sulawesi. IOP Conference Series: Earth and Environmental Science, 1251(1), 012011. doi:10.1088/1755-1315/1251/1/012011.
[14] Rahmawati, R. R., & Lee, J. L. (2023). Beach Erosion Assessment According to Maritime Mining and its Excavation Condition According to Erosion Tolerance Standards. SSRN (Preprint), 1-24. doi:10.2139/ssrn.4594311.
[15] Theocharidis, C., Doukanari, M., Kalogirou, E., Christofi, D., Mettas, C., Kontoes, C., Hadjimitsis, D., Argyriou, A. V., & Eliades, M. (2024). Coastal Vulnerability Index (CVI) Assessment: Evaluating Risks Associated with Human-Made Activities along the Limassol Coastline, Cyprus. Remote Sensing, 16(19), 1–22. doi:10.3390/rs16193688.
[16] Coca-Domínguez, O., & Ricaurte-Villota, C. (2019). Validation of the Hazard and Vulnerability Analysis of Coastal Erosion in the Caribbean and Pacific Coast of Colombia. Journal of Marine Science and Engineering, 7(8), 260. doi:10.3390/jmse7080260.
[17] Cao, X., Sun, Y., Wang, Y., Wang, Y., Cheng, X., Zhang, W., Zong, J. K., & Wang, R. (2024). Coastal erosion and flooding risk assessment based on grid scale: A case study of six coastal metropolitan areas. Science of the Total Environment, 946(174393), 1. doi:10.1016/j.scitotenv.2024.174393.
[18] Badwi, N., Baharuddin, I. I., & Abbas, I. (2019). Abrasion Hazard Mitigation Efforts on The Coast Maros Regency of South Sulawesi, Indonesia. Proceedings of the 1st International Conference on Advanced Multidisciplinary Research (ICAMR 2018), 104. doi:10.2991/icamr-18.2019.104.
[19] Ningsih, N. S., Azhari, A., & Al-Khan, T. M. (2023). Wave climate characteristics and effects of tropical cyclones on high wave occurrences in Indonesian waters: Strengthening sea transportation safety management. Ocean & Coastal Management, 243. doi:10.1016/j.ocecoaman.2023.106738.
[20] Senior, N., Matthews, A., Webber, B., Latos, B., & Baranowski, D. (2023). Extreme precipitation in South Sulawesi triggered by equatorial waves and its representation in MetUM forecasts. Tropical Meteorology and Tropical Cyclones, EGU23-6549, doi:10.5194/egusphere-egu23-6549.
[21] Haiyqal, S. V., Ismanto, A., Indrayanti, E., & Andrianto, R. (2023). Characteristics of Sea Wave Height during Normal, El Niño and La Niña Periods in the Makassar Strait. Jurnal Kelautan Tropis, 26(1), 190–202. doi:10.14710/jkt.v26i1.17003.
[22] Badan Pusat Statistik. (2021). Takalar Regency in Figures. Badan Pusat Statistik, Kabupaten Takalar, Indonesia. (In Indonesian).
[23] Triatmodjo, B. (1999). Coastal Engineering. Beta Offset, Yogyakarta, Indonesia. (In Indonesian).
[24] Fuad, M. A. Z., Yunita, N., Kasitowati, R. D., Hidayati, N., & Sartimbul, A. (2019). Long-Term Shoreline Change Monitoring Using Geo-Spatial Technology on the West Coast of Tuban Regency, East Java. Jurnal Geografi, 11(1), 48–61. doi:10.24114/jg.v11i1.11409. (In Indonesian).
[25] Raihansyah, T., Setiawan, I., & Rizwan, T. (2016). Study of Coastline Changes in the Coastal Area of Ujung Blang Waters, Banda Sakti District, Lhokseumawe. Jurnal Ilmiah Mahasiswa Kelautan Dan Perikanan Unsyiah, 1(1), 46–54. (In Indonesian).
[26] Hegde, A. V., & Akshaya, B. J. (2015). Shoreline Transformation Study of Karnataka Coast: Geospatial Approach. Aquatic Procedia, 4, 151–156. doi:10.1016/j.aqpro.2015.02.021.
[27] Putra, I. G. F., & Santosa, B. (2023). Analysis of Shoreline Changes Using Empirical Methods at Palik Beach, North Bengkulu. Jurnal Teknik Sipil, 19(2), 246–264. doi:10.28932/jts.v19i2.5953.
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.